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TD : PROGRAMMATION DYNAMIQUE – JEU DE RÖCKSE 

I) MISE EN SITUATION : RAPPELS SUR LES TROIS PREMIÈRES PARTIES 

I.1. Partie I : Sauts et chemins 
1. Tester la fonction poids(T,chemin), étant donné un plateau de jeu T et un chemin 

chemin, renvoie le poids de ce chemin : 
# Le poids total du chemin optimal est bien de -7 
>>> poids(T, chemin_optimal) 
-7 

2. La fonction est donnée ci-dessous : quelle est sa complexité ? 
La complexité est en O(L) où L est la longueur du chemin (nombre de cases). On 
parcourt chaque case une fois et l'accès à T[i][j] se fait en O(1). 
 

3. Tester la fonction appliquer_sauts(i,j,sauts) qui, étant donné une case (i, j) et une 
liste de sauts sauts, applique les sauts dans l’ordre donné par la liste sauts, en partant 
de la case (i, j) et renvoie la case atteinte. On suppose que le chemin indiqué par sauts 
reste dans la grille. 

# Trois déplacements vers la droite puis un déplacement en bas à 
gauche, en partant de la case (0,0) mènent bien à la case (1,2) 
>>> liste_sauts = [sauts[0], sauts[0], sauts[0], sauts[1]] 
>>> appliquer_sauts(0, 0, liste_sauts) 
(1, 2) 

 
4. Tester la fonction sauts_corrects(sauts,bonus,chemin) qui, étant donné l’ensemble 

des sauts par défaut représenté par la liste sauts, les sauts associés aux cases bonus 
bonus et un chemin chemin, renvoie True si les sauts utilisés dans le chemin sont 
corrects et False sinon. On suppose que le chemin reste dans la grille. 

# Les sauts par défaut, associés au bonus en case (1,2) sont en  
# accord avec le chemin optimal 
>>> sauts_corrects(sauts,bonus,chemin_optimal) 
True 
# Par contre sans le bonus, ces sauts par défaut ne sont pas en  
# accord avec le chemin optimal car le saut (1,0) est interdit 
>>> sauts_corrects(sauts,{},chemin_optimal) 
False 

5. Tester la fonction sauts_bien_formes(sauts,bonus) qui, étant donné la liste des sauts 
par défaut sauts et les sauts associés aux cases bonus bonus, vérifie que chaque saut de 
ces listes satisfait la condition (*). La fonction renvoie True si c’est le cas et False 
sinon. 

# Les sauts par défaut sont bien formés avec ou sans le bonus 
>>> sauts_bien_formes(sauts,bonus) 
True 
>>> sauts_bien_formes(sauts,{}) 
True 
# Mais avec le bonus (0,-1) (déplacement à gauche) ils ne sont plus  
# bien formés 
>>> sauts_bien_formes(sauts,{(1,2):[(0,-1)]}) 
False 
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I.2. Partie II : Recherche exhaustive 

1. Quelle est la longueur maximale L d’un chemin de (0, 0) à (N-1, N-1) pour n’importe quel 
ensemble de sauts satisfaisant (*) ? Donner un exemple d’ensemble de sauts par défaut 
pour lequel se réalise ce chemin de longueur L. 

Pour aller de (0,0) à (N−1, N−1), on doit augmenter i de N−1 et j de N−1. Avec des 
sauts satisfaisant la condition (*), chaque saut fait progresser d'au moins 1 dans le 
sens lexicographique. Le chemin le plus long est obtenu quand chaque saut ne fait 
progresser que d'exactement 1 : soit i augmente de 1 (et j peut diminuer ou rester 
constant), soit i reste constant et j augmente de 1. 
Le chemin le plus long alterne donc entre des déplacements « vers le bas » (i+1) et 
« vers la droite » (j+1), passant par 2N−1 cases au total. 

Exemple de sauts : sauts = [(0, 1), (1, 0)] (→ et ) 
Avec ces sauts, un chemin de longueur maximale serait : 

(0, 0) → (0, 1) → (0, 2) → ... → (0, N−1) → (1, N−1) → ... → (N−1, N−1) 
… soit N cases sur la première ligne puis N−1 cases vers le bas, pour un total de 
2N−1 cases. 

 
2. Tester la fonction trouve_complet(T,sauts,bonus,sauts_max) qui utilise la fonction 

récursive décrite précédemment et renvoie le couple (poids,sauts) où poids est le 
poids du chemin trouvé et sauts est la liste des sauts du chemin trouvé. 

 
# Avec sauts_max=100, le chemin optimal est trouvé par recherche  
# exhaustive avec un poids de -7. Ce chemin passe par la case bonus  
# (1,2) et utilise le saut (1,0) débloqué : 
>>> trouve_complet(T,sauts,bonus,100) 
(-7, [(0, 1), (0, 1), (1, -1), (0, 1), (1, 0), (1, 0), (0, 1)]) 
 
# Avec sauts_max = 5, on ne trouve pas un chemin jusqu’à l'arrivée 
>>> trouve_complet(T,sauts,bonus,5) 
(-11, [(0, 1), (0, 1), (1, -1), (0, 1), (1, 0)]) 

 
# Sans bonus et avec sauts_max=100, on trouve le chemin optimal avec  
# un poids de -6. Cela montre l'importance des cases bonus. 
>>> trouve_complet(T,sauts,{},100) 
(-6, [(0, 1), (0, 1), (1, -1), (1, -1), (0, 1), (0, 1), (1, 1)]) 
 
 

3. La fonction est donnée ci-dessous. Quelle est sa complexité ? 
À chaque niveau de récursion, on explore jusqu’à S = len(sauts) sauts (où S 
peut inclure les sauts bonus activés) et chaque saut valide mène à un appel 
récursif. Il y a en tout (saut_max + 1) niveaux : 

- Niveau 0 : 1 appel max 
- Niveau 1 : S appels max 
- Niveau 2 : S² appels max 
- … 
- Niveau horizon : Ssauts_max appels max 

La complexité est donc en O(Ssauts_max), soit O(S2N-1) car max(sauts_max) = 2N-1. 
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4. La fonction trouve_complet_rec() perd beaucoup de temps à refaire les mêmes calculs. 
On peut l’améliorer en enregistrant les résultats déjà calculés pour une valeur fixée de 
sauts_max. Expliquer en quelques lignes comment procéder. Quelle serait alors la 
complexité ? 

 
C’est le principe de la mémoïsation : on utilise un dictionnaire pour stocker les 
résultats déjà calculés. 
La clé est de la forme (i, j, tuple(sauts_disponibles)). Avant chaque calcul récursif, on 
vérifie si le résultat est déjà présent dans le dictionnaire. Si oui, on le retourne 
directement. Sinon, on effectue le calcul et on stocke le résultat avant de le retourner. 
Remarque : utiliser une clé de la forme (i, j, sauts_disponibles) n’est pas possible car 
sauts_disponibles n’est pas hashable ! Il faut le transformer en tuple. 

 
# Exemple de structure : 
memo = {}  # dictionnaire de mémoïsation 
 
def trouve_complet_rec_memo(...): 
    cle = (i, j, tuple(sauts_disponibles)) 
    if cle in memo: 
        return memo[cle] 
    # ... calcul ... 
    memo[cle] = resultat 
    return resultat 

 
Ici, chaque configuration (i, j, tuple(sauts_disponibles)) n’est calculée qu’une 
seule fois et l’accès avec le dictionnaire est en O(1). Or, pour traiter une clé on itère S = 
len(sauts) fois au maximum et chaque itération fait des opérations en O(1). Le coût 
total pour traiter une clé est donc de O(S). Le coût global est donc O(K∙S), où K est le 
nombre de clés distinctes effectivement rencontrées. 
 

On peut majorer (i, j) par N², et donc majorer le nombre de clés distinctes par K  
M∙N², où M est le nombre de tuples de sauts disponibles. Sans bonus, l’ensemble des 
sauts disponibles est constant et donc M = 1. Avec n bonus, le nombre de 

configurations possibles est au plus de 2n, donc on a M  2n où n est le nombre de 

bonus et K  2n∙N². 
 
On obtient donc un coût global de O(2n∙N²∙S), où n est le nombre de bonus, N est la 
taille de la grille (N x N), et S est le nombre de sauts disponibles par défaut. 
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II) PARTIE III : RECHERCHE GLOUTONNE 
1. Utiliser la fonction trouve_complet() (voir page 5) sur l’exemple donné en introduction 

pour trouver le chemin lorsque k = 2 ? Est-ce un chemin optimal ? 
 
# Recherche récursive depuis (0,0) avec k=2 : (0,0) -> (0,2) 
>>> trouve_complet(T,sauts,bonus,2,0,0) 
(-8, [(0, 1), (0, 1)]) 
# Recherche récursive depuis (0,2) avec k=2 : (0,2) -> (2,2) 
>>> trouve_complet(T,sauts,bonus,2,2,2) 
(-11, [(1, -1), (1, 1)]) 
# Recherche récursive depuis (2,2) avec k=2 : (2,2) -> (3,2) 
>>> trouve_complet(T,sauts,bonus,2,3,2) 
(-2, [(0, 1), (1, -1)]) 
# Recherche récursive depuis (3,2) avec k=2 : (3,2) -> (3,3) 
(4, [(0, 1)]) 
# On trouve le chemin : 
# [(0,0),(0,1),(0,2),(1,1),(2,2),(2,3),(3,2),(3,3)] 
# poids du chemin : non optimal 
>>> poids(T,[(0,0),(0,1),(0,2),(1,1),(2,2),(2,3),(3,2),(3,3)]) 
-5 

 
2. Écrire la fonction trouve_glouton(T,sauts,bonus,k) qui, étant donnés la grille de jeu 

T, la liste des sauts par défaut sauts, les sauts associés aux cases bonus bonus et 
l’horizon k, effectue cette recherche gloutonne et renvoie le couple (poids,sauts) où 
poids est le poids du chemin trouvé et sauts est la liste des sauts du chemin trouvé. En 
augmentant k, obtient-on forcément un chemin de poids plus petit ? 
 

def trouve_glouton(T,sauts,bonus,k): 
    case_finale = (len(T)-1,len(T)-1) 
    case = (0,0) 
    chemin = [(0,0)]         # Pour enregistrer le chemin 
 
    while case != case_finale: 
        # Cherche les meilleures actions à l'horizon k 
        _, actions = trouve_complet(T,sauts,bonus,k,case[0],case[1]) 
 
        # Applique les actions et enregistre les poids 
        for a in actions: 
            # position initiale 
            i = case[0] 
            j = case[1] 
 
            # Applique l'action sur la case courante 
            case = appliquer_sauts(i,j,[a]) 
 
            # Sauvegarde le chemin 
            chemin.append(case) 
    return chemin, poids(T,chemin) 
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# Recherche gloutonne depuis (0,0) avec k=2: 
>>> trouve_glouton(T,sauts,bonus,2) 
([(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3)], -5) 
# Recherche gloutonne depuis (0,0) avec k=3: 
>>> trouve_glouton(T,sauts,bonus,3) 
([(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), (3, 2), (3, 3)], -7) 
# Recherche gloutonne depuis (0,0) avec k=4: 
>>> trouve_glouton(T,sauts,bonus,4) 
([(0, 0), (0, 1), (0, 2), (1, 1), (2, 2), (3, 3)], -6) 

 
Augmenter  k améliore l’optimalité locale (on optimise sur un horizon plus long), 
mais ne rend pas l’algorithme optimal et ne garantit pas une amélioration 
monotone, car l’engagement sur des blocs de k coups peut mener à des décisions 
globalement moins bonnes. 

III) PARTIE IV : RECHERCHE PAR PROGRAMMATION DYNAMIQUE 

III.1. Encodage des cases bonus activées 

1. Écrire la fonction code_bonus(masque_bonus) qui renvoie le code associé au masque 
binaire masque_bonus représentant l’ensemble des cases bonus activées. 

 
def code_bonus(masque_bonus): 
    code = 0 
    for i in range(len(masque_bonus)): 
        code = code + masque_bonus[i]*2**i 
    return code 

 

III.2. Récurrence 

1. Écrire la définition de poids opt[i][j][<b0 … bn-1>]. On notera  l’ensemble des sauts 

par défaut et k l’ensemble des sauts associé à la k-ième case bonus. 
 

On suppose que tous les sauts de Γ et Δk sont bien formés et satisfont (*). 

On note, pour un état code_bonus = <b0 … bn-1> l’ensemble des sauts bien 

formés autorisés par code_bonus : 

𝑺(𝐜𝐨𝐝𝐞_𝐛𝐨𝐧𝐮𝐬) = 𝚪 ⋃ ( ⋃ 𝚫𝒌

𝒌:𝒃𝒌=𝟏

) 

Alors l’équation de récurrence peut s’écrire : 

𝐩𝐨𝐢𝐝𝐬_𝐨𝐩𝐭[𝐢][𝐣][< 𝐛𝟎. . . 𝐛𝐧−𝟏 >]]

=  𝐓[𝐢][𝐣]  + 𝐦𝐢𝐧
(𝜹𝒊,𝜹𝒋)∈𝑺(𝒄𝒐𝒅𝒆_𝒃𝒐𝒏𝒖𝒔′)

𝟎≤𝒊+𝜹𝒊≤𝑵,𝟎≤𝒊+𝜹𝒋≤𝑵

(𝒑𝒐𝒊𝒅𝒔_𝒐𝒑𝒕[𝒊 + 𝜹𝒊][𝒋 + 𝜹𝒋]][𝒄𝒐𝒅𝒆_𝒃𝒐𝒏𝒖𝒔′]) 

 
Conditions usuelles : 

-  code_bonus, poids_opt[N-1][N-1][code_bonus] = T[N-1][N-1] 

- Si l’ensemble sur lequel on prend le minimum est vide et (i, j)  (N-1, N-1), on 

pose poids_[i][j][code_bonus] = +  
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III.3. Algorithme 

L’itération « à l’envers » sur les (i, j) en partant de N - 1 jusqu’à 0 est justifiée par la 
récurrence : pour calculer les poids_opt[i][j][∙] , on utilise les termes 

poids_opt[i+i][j+j][∙]. Or, par la condition (*) (i + i, j + j) > (i, j) au sens lexicographique 
et qu’on ne prend en compte que les sauts qui sont dans la grille, cela garantit qu’en 
parcourant i et j à rebours, les valeurs des successeurs ont déjà été calculées. 
 
Concernant l’itération sur les masques des bonus, quand on est en (i, j), on peut activer (au 
plus) le bonus de cette case, donc on passe d’un ensemble B de bonus activés à un 
ensemble 𝐁′ = 𝐁 ∪ {𝐤} si (i, j) est la case bonus k. On ne désactive donc jamais un bonus et 
l’ensemble des bonus actifs ne fait qu’augmenter au cours d’un chemin. En termes de 
masque binaire, le nouveau masque qui active éventuellement le nouveau bonus contient 

tous les 1 du masque précédent (et éventuellement un 1 de plus), donc B  B’. Un état 
avec peu de bonus actifs dépend donc (potentiellement) d’un état avec plus de bonus 
actifs et pour que les valeurs soient disponibles en remplissage « bottom-up », il faut 
calculer d’abord les masques les plus « grands » puis descendre (ordre décroissant au sens 
de l’inclusion). 
Par exemple, avec n=3 bonus, un ordre décroissant commence par ceux qui ont le plus de 
1 : 

- Couche 3 : 111 
- Couche 2 : 110, 101, 011 
- Couche 1 : 100, 010, 001 
- Couche 0 : 000 

Ainsi, quand on calcule un état sur 010 (seul le bonus 1 actif), un successeur peut activer 
un bonus supplémentaire et passer à 011 ou 110, qui ont été calculés auparavant. 

Avec une approche top-down (récursive + mémoïsation), il n’y aurait pas besoin d’imposer 
cet ordre explicitement : la récursion irait « chercher » ce dont elle a besoin. 
 
1. Écrire une fonction combinaisons_bonus(nb_bonus) qui, étant donné le nombre total 

de cases bonus nb_bonus, renvoie la liste de masques bonus ordonnée de manière 
décroissante dans le sens de l’inclusion, en codant l’algorithme ci-dessus. 

def combinaisons_bonus(nb_bonus): 
    file=[[True for i in range(nb_bonus)]] 
    masques = [file[0]] 
 
    # On défile tant que la file n'est pas vide 
    while len(file) !=0: 
        choix = file.pop(0) 
 
        # Insère une coordonnée True -> False 
        for i,val in enumerate(choix): 
            modif = choix[:] 
            if val == True: 
                modif[i] = False 
                if modif not in file: 
                    file.append(modif) 
                    masques.append(modif) 
    return masques 
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2. Tester la fonction ranger_bonus(bonus) qui renvoie un couple (bonus_au_rang, 
rang_du_bonus) tel que : 
- bonus_au_rang[k] est la liste des sauts activés par la case bonus dont le numéro est 

k ; 
- rang_du_bonus[(i,j)] est le numéro de la case bonus (i, j) dans un masque de 

bonus. 
>>> ranger_bonus(bonus) 
([[(1, 0)]], {(1, 2): 0}) 
# Liste des bonus au rang 0 : [(1, 0)] 
# Rang du bonus en case (1,2) : 0 
#  => Sur la case (1,2), il y a un bonus dont le rang est 0 dans le  
# masque de bonus et ce bonus vaut (1,0) 

>>> ranger_bonus({(1, 2): [(1, 0),(-1,0)], (1,3):[(-1,-1)]}) 
([[(1, 0), (-1, 0)], [(-1, -1)]], {(1, 2): 0, (1, 3): 1}) 
# Liste des bonus au rang 0 : [(1, 0),(-1,0)] 
# Liste des bonus au rang 1 : [(-1, -1)] 
# Rang du bonus en case (1,2) : 0 
# Rang du bonus en case (1,3) : 1 
# => Sur la case (1,2), il y a deux bonus dont le rang est 0 dans le  
# masque de bonus et ces bonus valent [(1,0),(-1,0)] 
# => Sur la case (1,3), il y a un bonus dont le rang est 1 dans le  
# masque de bonus et ce bonus vaut (-1,-1) 

 
3. Écrire une fonction : 

trouver_sauts_possibles(sauts,bonus_au_rang,masque_bonus) 
 
… qui, étant donnés les sauts par défaut sauts, la liste bonus_au_rang renvoyée par 
ranger_bonus(bonus) et le masque des bonus activés masque_bonus, renvoie 
l’ensemble des sauts possibles. 

def trouver_sauts_possibles(sauts,bonus_au_rang,masque_bonus): 
    # Exemples de paramètres: 
    # sauts = [(0, 1), (1, -1), (1, 1)] 
    # bonus_au_rang = [[(1, 0), (0, 1)], [(-1, -1)], [(-1,1)]] 
    # masque_bonus = [False, True, False] 
 
    # Les sauts par défaut sont des sauts possibles 
    sauts_possibles = sauts[:] 
 
    # Pour chaque k=True, récupère les sauts associés 
    # et les ajoute aux sauts possibles 
    for k in range(len(masque_bonus)): 
        if masque_bonus[k] == True: 
            # ajoute les sauts associés au rang k 
            for saut in bonus_au_rang[k]: 
                sauts_possibles.append(saut) 
    return sauts_possibles 
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4. Tester la fonction : 

ajouter_bonus(bonus,rang_du_bonus,i,j,bonus_actifs,code_bonus_actifs) 

… qui active la case bonus (i, j) dans le code des cases bonus activées 
code_bonus_actifs. 

 
Si (i, j) n’est pas une case bonus, la fonction renvoie code_bonus_actifs. L’argument 
rang_du_bonus est la structure renvoyée par ranger_bonus(bonus) et l’argument 
bonus_actifs est le masque des bonus actifs dont le code est code_bonus_actifs. 

 
# Liste des bonus en case (1,2) et (2,1) : 
>>> bonus = {(1, 2): [(1, 0)], (2, 1): [(0, 1)]} 
# Tente d’ajouter un bonus sur une case qui n’en contient pas 
>>> ajouter_bonus(bonus, rang_du_bonus, 0, 0, [False, False], 0) 
0    # <= Retourne le code_bonus initial 
 
# Ajoute le bonus de la case (1,2) (rang 0) à un masque [False,False] = 0 
ajouter_bonus(bonus, rang_du_bonus, 1, 2, [False, False], 0) 
1    # <= [False,False] est passé à [True,False] = 1 
 
# Ajoute le bonus de la case (2,1) (rang 1) à un masque [False,False] = 0 
ajouter_bonus(bonus, rang_du_bonus, 2, 1, [False, False], 0) 
2    # <= [False,False] est passé à [False,True] = 2 
 
# Ajoute le bonus de la case (2,1) (rang 1) à un masque [True,False] = 1 
ajouter_bonus(bonus, rang_du_bonus, 2, 1, [True, False], 1) 
3    # <= [True,False] est passé à [True,True] = 3 

5. Compléter les sept parties manquantes indiquées par << ... >> dans le code. 

(Voir fichier « 8.2. TD7 – JeuDeRockse – Correction.py » ou page suivante. 
 
# poids_opt, saut_opt = trouve_dynamique(T,sauts,bonus) 
# poids_opt2, saut_opt2 = trouve_dynamique(T,sauts,{}) 
 
# Poids optimal depuis la case (0,0) avec bonus en case (1,2) non activé :  
# poids_opt[0][0][0] => -7 : Valeur cohérente 
 
# Poids optimal sans bonus en case (1,2) dans le jeu :  
# poids_opt2[0][0][0] => -6 : Valeur cohérente 
 
# Sauts optimaux depuis la case (1,1) avec bonus en case (1,2) disponible  
#  saut_opt[1][1] => [(0, 1, 0), (1, -1, 1)] : Va bien à droite (0, 1) car le bonus  
# n’a pas encore pu être activé 
 
# Sauts optimaux depuis la case (1,2) avec bonus en case (1,2) disponible : 
# si on est en (1,2) avec masque 0, la transition doit activer le bonus (masque 1) et 
# rendre le saut (1,0) utilisable. 
# saut_opt[1][1] => [(1, 0, 1), (1, 0, 1)] : Le bonus est activé et on va en bas (1,0) 
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def trouve_dynamique(T,sauts,bonus): 
    N = len(T) 
    nb_bonus = len(bonus) 
    nb_code_bonus = 2**nb_bonus 
    # Format poids_opt : (i,j,nb_code_bonus) 
    poids_opt = [[[INFINI for bonus_code in range(nb_code_bonus)] 
                          for j in range(N)] 
                          for i in range(N)] 
    # Format saut_opt : (i,j,nb_code_bonus) 
    saut_opt = [[[(0,0,0) for bonus_code in range(nb_code_bonus)] 
                          for j in range(N)] 
                          for i in range(N)] 
    # Récupère les bonus et les rangs associés 
    (bonus_au_rang ,rang_du_bonus) = ranger_bonus(bonus) 
    # Itère sur toutes les combinaisons des masques bonus possibles 
    # par ordre décroissant au sens de l'inclusion 
    for bonus_actifs in combinaison_bonus(nb_bonus): 
        # Récupère le code_bonus associé au masque courant 
        code_bonus_actifs = code_bonus(bonus_actifs) 
        # Cas de base sur la case (N-1, N-1) 
        poids_opt[N-1][N-1][code_bonus_actifs] = T[N-1][N-1] 
        # Récupère les sauts possibles depuis la case finale 
        # pour les différentes possibilités des masques bonus 
        sauts_possibles = trouver_sauts_possibles(sauts,bonus_au_rang,bonus_actifs) 
        # Itération à l'envers sur les (i,j) en partant de (N-1)->0 
        for i in range(N-1,-1,-1): 
            for j in range(N-1,-1,-1): 
                if i == N-1 and j == N-1: 
                    continue 
                # Mise à jour des bonus disponibles sur la case (i,j) 
                # pour le masque bonus_actif courant 
                code_bonus_dest = ajouter_bonus(bonus,rang_du_bonus,i,j, 
                                                bonus_actifs,code_bonus_actifs) 
                # Si (i,j) est dans les bonus -> ajoute le bonus aux sauts possibles 
                # depuis cette case 
                if (i,j) in bonus: 
                    sauts_possibles_final = sauts_possibles + bonus[(i,j)] 
                else: 
                    sauts_possibles_final = sauts_possibles 
                # Recherche du poids_opt[i_s][j_s][code_bonus] minimum 
                # parmi tous les successeurs 
                for (delta_i ,delta_j) in sauts_possibles_final: 
                    # Calcul de la case du successeur 
                    i_dest = i + delta_i 
                    j_dest = j + delta_j 
                    # Si le successeur est bien dans la grille 
                    if (i_dest in range(N) and j_dest in range(N)): 
                        # Applique la récurrence 
                        poids_opt_dest = poids_opt[i_dest][j_dest][code_bonus_dest] 
                        # Compare le poids et enregistre le poids minimum 
                        # dans poids_opt[i][j][code_bonus] 
                        if (poids_opt[i][j][code_bonus_actifs] > poids_opt_dest): 
                            poids_opt[i][j][code_bonus_actifs] = poids_opt_dest 
                            saut_opt[i][j][code_bonus_actifs] =  

(delta_i,delta_j,code_bonus_dest) 
                # Ajoute T[i][j] au poids du successeur optimum trouvé 
                poids_opt[i][j][code_bonus_actifs] += T[i][j] 
    return (poids_opt, saut_opt) 



TD : PROGRAMMATION DYNAMIQUE – JEU DE RÖCKSE 

10 

6. Quelle est la complexité de cette fonction ? 

N : la taille de la grille (NxN) 
n : le nombre de bonus disponibles 

Smax : un majorant du nombre de sauts testés : Smax = O(N²) (tous les (i, j) possibles) 
 
La structure du programme est : 

- boucle principale sur tous les masques de bonus : 2n 
- pour chaque masque, double boucle sur (i, j) : N² 

- pour chaque (i, j), boucle sur tous les sauts possibles :  N² 
- opérations internes en O(1) (comparaison, additions, accès aux éléments) 

Donc la complexité en temps est en O(2n∙N²∙Smax) = O(2n∙N4) 

Il y a aussi l’appel de la fonction trouver_sauts_possibles() appelé une fois par 
masque. Cette fonction construit la liste des sauts disponibles en parcourant les 
bonus actifs, son coût est de O(Smax) = O(N²). 
 
La complexité totale en temps est donc de O(2n∙(N²+N²∙Smax)) = O(2n∙N4) 
 
En mémoire, les listes poids_opt et saut_opt contiennent chacun N²∙2n entrées et 
donc en O(N²∙2n). 

 
7. Écrire la fonction solution_dynamique(saut_opt,N) qui, étant donnés la structure 

saut_opt calculée dans la question précédente et la dimension N de la grille, renvoie le 
chemin optimal correspondant. La fonction renvoie le chemin vide [] s’il n’existe pas de 
chemin entre la case de départ et celle d’arrivée. 

def solution_dynamique(saut_opt,N): 
    # case de départ 
    case = (0,0) 
    code_bonus = 0 
 
    # Sauvegarde du chemin 
    chemin = [case] 
 
    # Tant qu'on n’est pas arrivé sur la case finale 
    while case[0] != N-1 or case[1] != N-1: 
        # Récupère le saut optimum 
        saut = saut_opt[case[0]][case[1]][code_bonus] 
 
        if (saut[0], saut[1], saut[2]) == (0, 0, 0): 
            return []  # pas de chemin 
 
        # Applique le saut et le code 
        case = (case[0] + saut[0], case[1] + saut[1]) 
 
        # Met à jour le code_bonus 
        code_bonus = saut[2] 
        # Met à jour le chemin 
        chemin.append(case) 
 
     return chemin 
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# Grille de jeu du sujet 
T = [[2, -4, -6, 0], 
    [1, -2, 2, 3], 
    [-2, 2, -3, 4], 
    [-1, 4, -3, 7]] 
 
sauts = [(0, 1), (1, -1), (1, 1)]   # Sauts par défaut 
bonus = {(1, 2): [(1, 0)]}          # Case bonus en (1,2) 
poids_opt, saut_opt = trouve_dynamique(T,sauts,bonus) 
 
 [(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2), (3, 2), (3, 3)] 

 
# Chemin impossible 
T = [[0, 0, 0, 0], 
     [0, 0, 0, 0], 
     [0, 0, 0, 0], 
     [0, 0, 0, 0]] 
 
sauts = [(1, 0)]          # on descend uniquement 
bonus = {}                # pas de bonus 
 
poids_opt, saut_opt = trouve_dynamique(T,sauts,bonus) 
 [] 


