
TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

1

TD : PROGRAMMATION DYNAMIQUE
== FLOYD-WARSHALL ==

Remarque : les rappels théoriques sont à la dernière page de ce sujet.

Le fichier source à utiliser pour ce TD est : « TD6 – FloydWarshall.py »

Vous travaillez pour une entreprise de transport ferroviaire qui doit optimiser les trajets
entre différentes gares. Le réseau est modélisé par un graphe orienté où :

- Chaque sommet représente une gare ;
- Chaque arête représente une liaison directe avec un temps de trajet ;
- Certaines liaisons ont des temps négatifs (correspondances optimisées, bonus

fidélité).

L'objectif est de calculer les plus courts chemins entre toutes les paires de gares, en utilisant
l'algorithme de Floyd-Warshall.

On utilisera un dictionnaire L pour stocker les valeurs de programmation dynamique sous la
forme L[(k, v, w)]. Le paramètre k désigne le plus grand sommet autorisé comme sommet
intermédiaire.

Les données sont déjà définies dans le fichier source :

Graphe représenté par un dictionnaire d'adjacence
graphe[v] = [(w1, poids1), (w2, poids2), ...]
graphe = {
 1: [(2, 2), (3, 4)],
 2: [(3, -1), (4, 2)],
 3: [(4, 3), (5, 4)],
 4: [(5, 2)],
 5: []
}

Variante avec cycle négatif (pour tests)
graphe_neg = {
 1: [(2, 4), (3, 2)],
 2: [(4, 3), (5, 4)],
 3: [(2, -1), (4, 2), (5,4)],
 4: [(2, -5), (5, 2)],
 5: []
}

TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

2

I) APPROCHE BOTTOM-UP

Dans cette partie, vous implémentez l’approche bottom-up qui calcule systématiquement
tous les sous-problèmes (k, v, w) dans l’ordre k = 0, 1, 2, ..., n.

1. Ecrire une fonction poids_arete(G, u, v).

Cette fonction retourne le poids de l’arête u → v si elle existe, sinon np.inf.

Tester : >>> poids_arete(graphe,1,2)
2
>>> poids_arete(graphe,1,3)
4
>>> poids_arete(graphe,1,4)
inf

2. Écrire une fonction initialiser_L0(G).

Cette fonction initialise et retourne le dictionnaire L contenant tous les cas de base k = 0
(voir les rappels théoriques à la fin du sujet).

 Tester : >>> L = initialiser_L0(graphe)
>>> L[(0,1,1)]
0
>>> L[(0,1,3)]
4
>>> L[(0,1,5)]
Inf

3. Écrire une fonction floyd_warshall_bottomup(G).

Cette fonction calcule toutes les valeurs L[(k, v, w)] pour v, w  V à partir des valeurs au
niveau k = 1 , en appliquant la récurrence et détecte également un cycle négatif pendant
les itérations.
Elle retourne (dist, False) où dist[(v, w)] = L[(n, v, w)] si aucun cycle négatif
n’est détecté, et retourne (None, True) dans le cas contraire.

Tester : >>> L = initialiser_L0(graphe)

>>> dist, cycle_negatif = floyd_warshall_bottomup(graphe,L)
>>> dist[(1,5)]
5
>>> cycle_negatif
False
>>> L = initialiser_L0(graphe_neg)
>>> dist, cycle_negatif = floyd_warshall_bottomup(graphe_neg,L)
>>> dist
>>> cycle_negatif
True

TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

3

4. Affichage (comparaison) : le fichier source fournit une fonction AfficheTable(L,G) qui
affiche les tranches pour chaque valeur de k. En bottom-up, toutes les cases existent à
chaque k.

Graphe sans cycle négatif :

Graphe avec cycle négatif (détecté à k = 2) :

5. Questions théoriques (complexité).

a) Combien de sous-problèmes (k,v,w) sont calculés pour un graphe à n sommets ?
b) En déduire la complexité temporelle et la complexité spatiale.
c) Le cours mentionne une version bottom-up optimisée en mémoire à O(n²). Donner

l’équation de récurrence à utiliser dans ce cas.

TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

4

II) APPROCHE TOP-DOWN AVEC MÉMOÏSATION

Dans cette partie, vous implémentez la version récursive avec mémoïsation (top-down).
L’idée est de calculer un sous-problème seulement lorsqu’il est demandé, et de mémoriser le
résultat dans un dictionnaire.

1. Écrire une fonction floyd_warshall_topdown_paire(G, v, w).

Cette fonction calcule uniquement la distance optimale pour une paire (v, w) via une
fonction récursive f_rec(k, a, b) et un dictionnaire L de mémoïsation.
On inclut une détection précoce de cycle négatif : lever une exception « Cycle Négatif
Détecté ».

def floyd_warshall_topdown_paire(G,v,w):
 L = {}

 def f_rec(k,a,b):
 # Mémoïsation

 # Cas de base k == 0

 # Récurrence

 # Détection cycle_negatif
 if :
 raise ValueError("Cycle négatif détecté")

 return L[(k,a,b)]

 n = len(G)
 return L, f_rec(n,v,w)

Tester :
>>> L, dist = floyd_warshall_topdown_paire(graphe_neg,2,4)
TypeError: Cycle négatif détecté
>>> L, dist = floyd_warshall_topdown_paire(graphe,2,4)
>>> dist
>>> 5
>>> AfficherTable(L,graphe)

TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

5

2. Écrire une fonction floyd_warshall_topdown_toutes_paires(G).
Cette fonction calcule toutes les distances en réutilisant le même dictionnaire L pour
tous les appels récursifs, puis retourne (dist, cycle_negatif, L). Si cycle_negatif est
True, on retournera None pour les dictionnaires dist et L.

def floyd_warshall_topdown_toutes_paires(G):

 L = {}

 def f_rec(k,a,b):

 return L[(k,a,b)]

 n = len(G)

 dist = {}

 try:

 # Calcul des distances par récurrence top-down

 return (dist,False,L)

 except:

 return (None,True,None)

Tester : >>> floyd_warshall_topdown_toutes_paires(graphe_neg)
 >>> (None, True, None)

>>> dist,cycle_negatif,L = floyd_warshall_topdown_toutes_paires(graphe)
>>> cycle_negatif
False
>>> dist[(1,5)]
5
>>> AfficheTable(L,graphe)

TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

6

3. Questions théoriques.
a) Quelle est la complexité temporelle du top-down dans le pire des cas ?
b) Pourquoi, lorsqu’on ne calcule qu’une seule paire, le nombre d’états mémorisés peut
être strictement inférieur à O(n3) ?
c) Le cours précise qu’on peut détecter un cycle négatif « au fur et à mesure » en top-
down mais qu’on ne peut pas conclure « pas de cycle négatif » tant qu’on n’a pas forcé le
calcul des diagonales pertinentes. Expliquer.

III) RECONSTRUCTION D’UN CHEMIN OPTIMAL

Une fois les valeurs L[(k,v,w)] calculées (par bottom-up ou top-down complet), on veut
reconstruire un plus court chemin de v vers w. On suit le principe du cours : à partir de
(n,v,w), on teste si la valeur « hérite » de k-1 ou si k est un sommet intermédiaire.

1. Écrire une fonction decision_reconstruction(L, k, v, w).

Cette fonction retourne une information sur la décision au niveau (k, v, w) :
- soit « HERITER » si L[(k, v, w)] == L[(k-1, v, w)] ;
- soit « DECOMPOSER » si L[(k, v, w)] == L[(k-1, v, k)] + L[(k-1, k, w)].

2. Écrire une fonction rec_chemin(L, k, v, w).

Fonction récursive de reconstruction :

• Si L[(k, v, w)] == np.inf, retourner []

• Si k == 0, renvoyer le chemin direct [v, w]

• Si « HERITER », on descend à k-1

• Si « DECOMPOSER », on reconstruit v → k puis k → w récursivement et on les
concatène en évitant de dupliquer k.

Tester : >>> rec_chemin(L,0,1,3) # Chemin 1 → 3

[1, 3]
>>> rec_chemin(L,1,1,3)
[1, 3]
>>> rec_chemin(L,2,1,3)
[1, 2, 3]
>>> rec_chemin(L,3,1,3)
[1, 2, 3]

>>> rec_chemin(L,0,1,4) # Chemin 1 → 4
[]
>>> rec_chemin(L,1,1,4)
[]
>>> rec_chemin(L,2,1,4)
[1, 2, 4]
>>> rec_chemin(L,3,1,4)
[1, 2, 4]
>>> rec_chemin(L,4,1,4)
[1, 2, 4]

3. Questions théoriques.

a) Pourquoi la reconstruction d’un chemin est en O(n) dans le pire cas ?
b) Pourquoi reconstruire tous les chemins (toutes paires) peut coûter O(n3) au total ?

TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL

7

RAPPELS THÉORIQUES

Formulation du problème

Soit un graphe orienté G = (V, E) avec n sommets et m arêtes, où chaque arête e possède
une longueur réelle ℓe (possiblement négative). On cherche à calculer pour chaque paire de
sommets (v, w) la distance minimale dist(v, w).

Sous-problèmes et notation

On note Lk,v,w la longueur minimale d'un chemin sans cycle de v vers w utilisant uniquement
les sommets {1, 2, ..., k} comme sommets intermédiaires. Si aucun tel chemin n'existe, on

pose Lk,v,w = +.

Relation de récurrence

Pour tout k  {1, 2, …, n} et v,w ∈ V :

𝐿𝑘,𝑣,𝑤 = 𝑚𝑖𝑛 {

𝐿𝑘−1,𝑣,𝑤 (𝑐𝑎𝑠 𝑛°1)

𝐿𝑘−1,𝑣,𝑘 + 𝐿𝑘−1,𝑘,𝑤 (𝑐𝑎𝑠 𝑛° 2)

Cas de base

Cas de base (k = 0) :
- L0,v,v = 0 (chemin vide) ;
- L0,v,w = ℓv,w si l'arête (v, w) existe ;

- L0,v,w = + sinon

Détection de cycle négatif

Le graphe contient un cycle négatif si et seulement si, à la fin de l'algorithme, on a Ln,v,v < 0
pour un certain sommet v ∈ V.

Algorithme de reconstruction

Une fois la table des valeurs optimales remplie, on reconstruit le chemin en « remontant »
depuis le problème (n, v, w) jusqu'à k = 0.

À chaque position (k, v, w), on détermine quelle décision a permis d'obtenir Lk,v,w :

- Si Lk,v,w == Lk-1,v,w → Héritage (k non utilisé)

- Sinon, le sommet k fait partie du chemin optimal. On reconstruit v → k puis k → w
récursivement et on concatène ces deux chemins.

