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TD : PROGRAMMATION DYNAMIQUE 
== FLOYD-WARSHALL == 

 
Remarque : les rappels théoriques sont à la dernière page de ce sujet. 

Le fichier source à utiliser pour ce TD est : « TD6 – FloydWarshall.py » 
 
Vous travaillez pour une entreprise de transport ferroviaire qui doit optimiser les trajets 
entre différentes gares. Le réseau est modélisé par un graphe orienté où : 

- Chaque sommet représente une gare ; 
- Chaque arête représente une liaison directe avec un temps de trajet ; 
- Certaines liaisons ont des temps négatifs (correspondances optimisées, bonus 

fidélité). 
 
L'objectif est de calculer les plus courts chemins entre toutes les paires de gares, en utilisant 
l'algorithme de Floyd-Warshall. 
 
On utilisera un dictionnaire L pour stocker les valeurs de programmation dynamique sous la 
forme L[(k, v, w)]. Le paramètre k désigne le plus grand sommet autorisé comme sommet 
intermédiaire. 
 
Les données sont déjà définies dans le fichier source : 
 

# Graphe représenté par un dictionnaire d'adjacence 
# graphe[v] = [(w1, poids1), (w2, poids2), ...] 
graphe = { 
    1: [(2, 2), (3, 4)], 
    2: [(3, -1), (4, 2)], 
    3: [(4, 3), (5, 4)], 
    4: [(5, 2)], 
    5: [] 
} 
 
# Variante avec cycle négatif (pour tests) 
graphe_neg = { 
    1: [(2, 4), (3, 2)], 
    2: [(4, 3), (5, 4)], 
    3: [(2, -1), (4, 2), (5,4)], 
    4: [(2, -5), (5, 2)], 
    5: [] 
} 
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I) APPROCHE BOTTOM-UP 

Dans cette partie, vous implémentez l’approche bottom-up qui calcule systématiquement 
tous les sous-problèmes (k, v, w) dans l’ordre k = 0, 1, 2, ..., n. 
 
1. Ecrire une fonction poids_arete(G, u, v). 

Cette fonction retourne le poids de l’arête u → v si elle existe, sinon np.inf. 
 

Tester :  >>> poids_arete(graphe,1,2) 
2 
>>> poids_arete(graphe,1,3) 
4 
>>> poids_arete(graphe,1,4) 
inf 

 
2. Écrire une fonction initialiser_L0(G). 

Cette fonction initialise et retourne le dictionnaire L contenant tous les cas de base k = 0 
(voir les rappels théoriques à la fin du sujet). 
 

  Tester : >>> L = initialiser_L0(graphe) 
>>> L[(0,1,1)] 
0 
>>> L[(0,1,3)] 
4 
>>> L[(0,1,5)] 
Inf 

 
3. Écrire une fonction floyd_warshall_bottomup(G). 

Cette fonction calcule toutes les valeurs L[(k, v, w)] pour v, w  V à partir des valeurs au 
niveau k = 1 , en appliquant la récurrence et détecte également un cycle négatif pendant 
les itérations. 
Elle retourne (dist, False) où dist[(v, w)] = L[(n, v, w)] si aucun cycle négatif 
n’est détecté, et retourne (None, True) dans le cas contraire. 

 
Tester : >>> L = initialiser_L0(graphe) 

>>> dist, cycle_negatif = floyd_warshall_bottomup(graphe,L) 
>>> dist[(1,5)] 
5 
>>> cycle_negatif 
False 
>>> L = initialiser_L0(graphe_neg) 
>>> dist, cycle_negatif = floyd_warshall_bottomup(graphe_neg,L) 
>>> dist 
>>> cycle_negatif 
True 
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4. Affichage (comparaison) : le fichier source fournit une fonction AfficheTable(L,G) qui 
affiche les tranches pour chaque valeur de k. En bottom-up, toutes les cases existent à 
chaque k. 

 

Graphe sans cycle négatif : 

 
 
 

Graphe avec cycle négatif (détecté à k = 2) : 

 
 
5. Questions théoriques (complexité). 

a) Combien de sous-problèmes (k,v,w) sont calculés pour un graphe à n sommets ? 
b) En déduire la complexité temporelle et la complexité spatiale. 
c) Le cours mentionne une version bottom-up optimisée en mémoire à O(n²). Donner 

l’équation de récurrence à utiliser dans ce cas. 
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II) APPROCHE TOP-DOWN AVEC MÉMOÏSATION 

Dans cette partie, vous implémentez la version récursive avec mémoïsation (top-down). 
L’idée est de calculer un sous-problème seulement lorsqu’il est demandé, et de mémoriser le 
résultat dans un dictionnaire. 
 
1. Écrire une fonction floyd_warshall_topdown_paire(G, v, w). 

Cette fonction calcule uniquement la distance optimale pour une paire (v, w) via une 
fonction récursive f_rec(k, a, b) et un dictionnaire L de mémoïsation. 
On inclut une détection précoce de cycle négatif : lever une exception « Cycle Négatif 
Détecté ». 

 
def floyd_warshall_topdown_paire(G,v,w): 
    L = {} 
 
    def f_rec(k,a,b): 
        # Mémoïsation 
        .................... 
 
        # Cas de base k == 0 
        .................... 
 
        # Récurrence 
        .................... 
 
        # Détection cycle_negatif 
        if ............................... : 
            raise ValueError("Cycle négatif détecté") 
 
        return L[(k,a,b)] 
 
    n = len(G) 
    return L, f_rec(n,v,w) 

     
Tester : 
>>> L, dist = floyd_warshall_topdown_paire(graphe_neg,2,4) 
TypeError: Cycle négatif détecté 
>>> L, dist = floyd_warshall_topdown_paire(graphe,2,4) 
>>> dist 
>>> 5 
>>> AfficherTable(L,graphe) 
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2. Écrire une fonction floyd_warshall_topdown_toutes_paires(G). 
Cette fonction calcule toutes les distances en réutilisant le même dictionnaire L pour 
tous les appels récursifs, puis retourne (dist, cycle_negatif, L). Si cycle_negatif est 
True, on retournera None pour les dictionnaires dist et L. 

 
def floyd_warshall_topdown_toutes_paires(G): 

    L = {} 

    def f_rec(k,a,b): 

        ..................... 

        ..................... 

        return L[(k,a,b)] 

 

    n = len(G) 

    dist = {} 

    try: 

        # Calcul des distances par récurrence top-down 

        ...................... 

        ...................... 

        return (dist,False,L) 

    except: 

        return (None,True,None) 
 
Tester : >>> floyd_warshall_topdown_toutes_paires(graphe_neg) 
  >>> (None, True, None) 

>>> dist,cycle_negatif,L = floyd_warshall_topdown_toutes_paires(graphe) 
>>> cycle_negatif 
False 
>>> dist[(1,5)] 
5 
>>> AfficheTable(L,graphe) 
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3. Questions théoriques. 
a) Quelle est la complexité temporelle du top-down dans le pire des cas ? 
b) Pourquoi, lorsqu’on ne calcule qu’une seule paire, le nombre d’états mémorisés peut 
être strictement inférieur à O(n3) ? 
c) Le cours précise qu’on peut détecter un cycle négatif « au fur et à mesure » en top-
down mais qu’on ne peut pas conclure « pas de cycle négatif » tant qu’on n’a pas forcé le 
calcul des diagonales pertinentes. Expliquer. 

III) RECONSTRUCTION D’UN CHEMIN OPTIMAL 

Une fois les valeurs L[(k,v,w)] calculées (par bottom-up ou top-down complet), on veut 
reconstruire un plus court chemin de v vers w. On suit le principe du cours : à partir de 
(n,v,w), on teste si la valeur « hérite » de k-1 ou si k est un sommet intermédiaire. 
 
1. Écrire une fonction decision_reconstruction(L, k, v, w). 

Cette fonction retourne une information sur la décision au niveau (k, v, w) : 
- soit « HERITER » si L[(k, v, w)] == L[(k-1, v, w)] ; 
- soit « DECOMPOSER » si L[(k, v, w)] == L[(k-1, v, k)] + L[(k-1, k, w)]. 

 
2. Écrire une fonction rec_chemin(L, k, v, w). 

Fonction récursive de reconstruction : 

• Si L[(k, v, w)] == np.inf, retourner [] 

• Si k == 0, renvoyer le chemin direct [v, w] 

• Si « HERITER », on descend à k-1 

• Si « DECOMPOSER », on reconstruit v → k puis k → w récursivement et on les 
concatène en évitant de dupliquer k. 

 
Tester :  >>> rec_chemin(L,0,1,3)  # Chemin 1 → 3 

[1, 3] 
>>> rec_chemin(L,1,1,3) 
[1, 3] 
>>> rec_chemin(L,2,1,3) 
[1, 2, 3] 
>>> rec_chemin(L,3,1,3) 
[1, 2, 3] 

 
>>> rec_chemin(L,0,1,4)  # Chemin 1 → 4 
[] 
>>> rec_chemin(L,1,1,4) 
[] 
>>> rec_chemin(L,2,1,4) 
[1, 2, 4] 
>>> rec_chemin(L,3,1,4) 
[1, 2, 4] 
>>> rec_chemin(L,4,1,4) 
[1, 2, 4] 

 
3. Questions théoriques. 

a) Pourquoi la reconstruction d’un chemin est en O(n) dans le pire cas ? 
b) Pourquoi reconstruire tous les chemins (toutes paires) peut coûter O(n3) au total ?



TD : PROGRAMMATION DYNAMIQUE – FLOYD-WARSHALL 

7 

RAPPELS THÉORIQUES 

 
Formulation du problème 

Soit un graphe orienté G = (V, E) avec n sommets et m arêtes, où chaque arête e possède 
une longueur réelle ℓe (possiblement négative). On cherche à calculer pour chaque paire de 
sommets (v, w) la distance minimale dist(v, w). 
 
Sous-problèmes et notation 

On note Lk,v,w la longueur minimale d'un chemin sans cycle de v vers w utilisant uniquement 
les sommets {1, 2, ..., k} comme sommets intermédiaires. Si aucun tel chemin n'existe, on 

pose Lk,v,w = +. 
 
Relation de récurrence 

Pour tout k  {1, 2, …, n} et v,w ∈ V : 
 

𝐿𝑘,𝑣,𝑤 = 𝑚𝑖𝑛 {

𝐿𝑘−1,𝑣,𝑤               (𝑐𝑎𝑠 𝑛°1)

𝐿𝑘−1,𝑣,𝑘  +  𝐿𝑘−1,𝑘,𝑤 (𝑐𝑎𝑠 𝑛° 2)
 

Cas de base 

Cas de base (k = 0) : 
- L0,v,v = 0 (chemin vide) ; 
- L0,v,w = ℓv,w si l'arête (v, w) existe ; 

- L0,v,w = + sinon 
 
Détection de cycle négatif 

Le graphe contient un cycle négatif si et seulement si, à la fin de l'algorithme, on a Ln,v,v < 0 
pour un certain sommet v ∈ V. 
 
Algorithme de reconstruction 

Une fois la table des valeurs optimales remplie, on reconstruit le chemin en « remontant » 
depuis le problème (n, v, w) jusqu'à k = 0. 
 
À chaque position (k, v, w), on détermine quelle décision a permis d'obtenir Lk,v,w : 

- Si Lk,v,w == Lk-1,v,w → Héritage (k non utilisé) 

- Sinon, le sommet k fait partie du chemin optimal. On reconstruit v → k puis k → w 
récursivement et on concatène ces deux chemins. 


