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Notre cinquième étude de cas concerne le problème du calcul de la distance d'édition entre 
deux chaînes de caractères (aussi appelée distance de Levenshtein). Nous allons construire la 
solution du problème par programmation dynamique. 
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I) DÉFINITION DU PROBLÈME 

Une instance du problème est spécifiée par deux chaînes de caractères : une chaîne source 
S1 de longueur n et une chaîne cible S2 de longueur m. La tâche de l'algorithme est de 
trouver le nombre minimal d'opérations élémentaires nécessaires pour transformer S1 en S2. 
 
On autorise trois opérations, chacune de coût 1 (garder un caractère à un coût nul) : 

- Insertion d’un caractère dans S1 (pour se rapprocher de S2) : 
o Ex : si S1 = "CHAT" et S2 = "CHATS", on peut insérer 'S' dans S1. 

- Suppression d’un caractère de S1 : 
o Ex : si S1 = "CHATS" et S2 = "CHAT", on peut supprimer 'S' de S1. 

- Substitution d’un caractère de S1 par un autre : 
o  Ex: si S1 = "CHAT" et S2 = "CHOT", on peut remplacer 'A' par 'O'. 

 
La distance d’édition d(S1, S2) est le coût minimal (donc le nombre minimal d’opérations) 
pour transformer S1 en S2. 

Problème de la distance d’édition (Levenshtein) 

Entrée : Deux chaînes de caractères S1 et S2. 

Sortie : Un entier d(S1, S2), égal au nombre minimal d’insertions, suppressions et de 
substitutions transformant S1 en S2. 

 
Exemple : Soit le calcul de la distance entre S1 = "CHIEN" (n=5) et S2 = "NICHE" (m=5). 

Une solution optimale (distance 4) serait : 

- Insertion de 'N' → S1 = "NCHIEN" (coût +1) 

- Insertion de 'I' → S1 = "NICHIEN" (coût +1) 

- Garder 'C' puis grader 'H' → S1 = "NICHIEN" (coût 0) 

- Suppression de 'I' → S1 = "NICHEN" (coût +1) 

- Suppression de 'N' → S1 = "NICHE" (coût +1) 
 
La distance d'édition a de nombreuses applications pratiques : 

- Correction orthographique : suggérer des mots proches d'un mot mal orthographié ; 
- Bio-informatique : comparer des séquences ADN ou protéiques pour détecter des 

mutations ; 
- Détection de plagiat : mesurer la similarité entre deux textes ; 
- Reconnaissance vocale : corriger les erreurs de transcription. 

Pour résoudre ce problème de manière exhaustive (par brute force), il faudrait tout d’abord 
lister toutes les séquences possibles d'opérations, puis pour chacune, vérifier si elle 
transforme bien S1 en S2, et enfin garder la plus courte. 
 
La pire façon de transformer S1 en S2 est de supprimer tous les caractères de S1 (n 
opérations) et d’insérer tous les caractères de S2 dans S1 (m opérations). Le nombre 
maximum d’étapes d'une séquence de transformation est donc bornée par (n + m). À 
chaque étape, on peut effectuer jusqu'à 3 types d'opérations. Dans le pire des cas, le 
nombre de chemins à explorer est de de O(3m+n). C'est un problème exponentiel qui 
demande une approche plus efficace. 
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II) SOUS-STRUCTURE OPTIMALE ET RELATION DE RÉCURRENCE 

Pour appliquer la programmation dynamique, on doit identifier des sous-problèmes 
pertinents et une relation de récurrence entre eux, issue de la structure d’une solution 
optimale. 
 

II.1. Sous-structure optimale 

Considérons une instance du problème avec une chaîne source S1 et une chaîne cible S2. 
Regardons la dernière opération effectuée permettant d’obtenir une transformation 
optimale de S1[1..n] en S2[1..m]. 
 
Trois cas sont possibles pour traiter les derniers caractères des préfixes S1[1..n] et S2[1..m] 
lors de la dernière étape : 
 
Cas n°1 : Suppression du dernier caractère de S1 

Lors de la dernière étape, on a choisi de supprimer le caractère S1[n]. Rechercher le coût 
minimal pour transformer S1[1..n] en S2[1..m] revient dans ce cas à rechercher le coût 
minimal pour transformer S1[1..n-1] en S2[1..m], en y ajoutant le coût d’une opération de 
suppression (+1) : 

𝑐𝑜û𝑡 (𝑆1[1. . 𝑛], 𝑆2[1. .𝑚]) = 𝑐𝑜û𝑡 (𝑆1[1. . 𝑛 − 1], 𝑆2[1. . 𝑚]) + 1 

Exemple : S1 = "abc" et S2 = "ab" 
- Solution optimale pour transformer S1[1..3] en S2[1..2] : supprimer 'c'. 
- Coût final : coût du sous-problème {S1[1..2] = "ab", S2[1..2]= "ab"} + coût d’une 

suppression (+1). 
 
Cas n°2 : Substitution ou alignement (match) des derniers caractères de S1 et S2. 

Lors de la dernière étape, on a choisi soit de substituer le caractère S1[n] par S2[m] (c’est-à-
dire de remplacer S1[n] par S2[m]), soit d’aligner S1[n] avec S2[m] (c’est-à-dire de garder S1[n] 
tel quel car S1[n] = S2[m]). 
Rechercher le coût optimal de la transformation finale revient dans ces cas à rechercher le 
coût minimal pour transformer S1[1..n-1] en S2[1..m-1], en y ajoutant éventuellement le coût 

de la substitution (+1) si S1[n]  S2[m]. Dans le cas où S1[n] = S2[m], on n’ajoute pas de coût 
supplémentaire : 

𝑐𝑜û𝑡 (𝑆1[1. . 𝑛], 𝑆2[1. .𝑚])

= 𝑐𝑜û𝑡 (𝑆1[1. . 𝑛 − 1], 𝑆2[1. .𝑚 − 1]) + {
0, 𝑠𝑖 𝑆1[𝑛] == 𝑆2[𝑚]
1, 𝑠𝑖𝑛𝑜𝑛

 

Exemple : S1 = "abc" et S2 = "abd" 
- Solution optimale pour transformer S1[1..3] en S2[1..3] : substituer 'c' par 'd'. 
- Coût final : coût du sous-problème {S1[1..2] = "ab", S2[1..2]= "ab"} + coût d’une 

substitution (+1). 
 

Exemple : S1 = "abc" et S2 = "abc" 
- Solution optimale pour transformer S1[1..3] en S2[1..3] : ne rien faire (match). 
- Coût final : coût du sous-problème {S1[1..2] = "ab", S2[1..2]= "ab"}. 
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Cas n°3 : Insertion du dernier caractère de S2.  

Lors de la dernière étape, on a choisi d’insérer le caractère S2[m] afin d’obtenir le coût 
minimal permettant de transformer S1[1..n] en S2[1..m].  
Rechercher le coût optimal de la transformation finale revient dans ce cas à rechercher le 
coût minimal pour transformer S1[1..n] en S2[1..m-1], en y ajoutant le coût d’une opération 
d’insertion (+1) : 

𝑐𝑜û𝑡 (𝑆1[1. . 𝑛], 𝑆2[1. .𝑚]) = 𝑐𝑜û𝑡 (𝑆1[1. . 𝑛], 𝑆2[1. .𝑚 − 1]) + 1 

Exemple : S1 = "ab" et S2 = "abc" 
- Solution optimale pour transformer S1[1..2] en S2[1..3] : insérer 'c'. 
- Coût final : coût du sous-problème {S1[1..2] = "ab", S2[1..2]= "ab"} + coût d’une 

insertion (+1). 
 

II.2. Équation de récurrence sur les valeurs optimales 

On note Di,j la distance d’édition minimale entre les i premiers caractères de S1 et les j 
premiers caractères de S2. 

Récurrence sur la valeur de la solution optimale 

Pour tout i  {0..n} et j  {0..m}, les cas de base sont : 
- D0,j = j (transformer la chaîne vide en j caractères demande j insertions), 
- Di,0 = i (transformer i caractères en chaîne vide demande i suppressions). 
 

Pour tout i  {1..n} et j  {1..m} : 

𝐷𝑖,𝑗 = 𝑚𝑖𝑛

{
 

 
𝐷𝑖−1,𝑗 + 1   (𝑐𝑎𝑠 𝑛°1 ∶  𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐷𝑖,𝑗−1 + 1 (𝑐𝑎𝑠 𝑛°3 ∶  𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛)

𝐷𝑖−1,𝑗−1 + {
0, 𝑠𝑖 𝑆1[𝑖] == 𝑆2[𝑗]
1, 𝑠𝑖𝑛𝑜𝑛

 (𝑐𝑎𝑠 𝑛°2 ∶  𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 / 𝑚𝑎𝑡𝑐ℎ)

 

III) SOUS-PROBLÈMES ET COMPLEXITÉ 

III.1. Définition des sous-problèmes 

Ici, les sous-problèmes sont indexés par les paramètres i (longueur du préfixe de S1, de 0 à n) 
et j (longueur du préfixe de S2, de 0 à m). Quand i = 0 ou j = 0, S1[1..0] et S2[1..0] sont des 
chaînes vides. 
 
En faisant varier ces deux paramètres sur toutes les valeurs pertinentes, nous obtenons nos 
sous-problèmes : 
 

Sous-problèmes de la distance de Levenshtein 

Calculer Di,j, la distance minimale pour transformer le préfixe de longueur i de S1 en le 
préfixe de longueur j de S2. 
 

(Pour chaque i = 0, 1, 2 … n et j = 0, 1, 2 … m) 

 
Le plus grand sous-problème (avec i=n et j=m) est exactement le problème original. 
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III.2. Schéma de récursion 

Le schéma de récursion sur un l’exemple où on cherche à aligner S1 = "tu" avec S2 = "toi" est 
donné sur la figure ci-dessous : 

- La notation ["tu","toi"] signifie qu’on cherche la solution optimale au problème qui 
consiste à aligner S1 = "tu" avec S2 = "toi" ; 

- La notation D[2][3]=2 signifie que le coût optimal pour aligner les deux premiers 
caractères de S1 avec les 3 premiers caractères de S2 vaut 2 ; 

- Dans le cas n°1 (branches de gauche), à partir des cas de base (en vert), on remonte 
la valeur D[i-1][j] + 1 (coût d’une suppression) ; 

- Dans le cas n°2 (branches du milieu), à partir des cas de base (en vert), on remonte la 
valeur D[i-1][j-1] +1 (si il y a substitution) ou D[i-1][j-1] (si il y a match) ; 

- Dans le cas n°3 (branches de droite), à partir des cas de base (en vert), on remonte la 
valeur D[i][j-1] + 1 (coût d’une insertion). 

- Les valeurs D[i][j] prennent le minimum des valeurs remontées. 

 
Figure 1 : Schéma de récursion du problème de la distance de Levenshtein 

III.3. Complexité sans mémoïsation 

À chaque étape, on diminue i ou j (ou les deux). La profondeur de récursion est donc au plus 
de (n + m). Dans le pire des cas, chaque nœud se ramifie en 3, ce qui donne un arbre de 
récursion pouvant contenir jusqu’à O(3n+m) nœuds. 
 
Le travail local à chaque nœud est en O(1) (comparaisons, additions, calcul d’un minimum), 
donc l’algorithme récursif sans mémoïsation est exponentiel : O(3n+m). 
 
Remarquons cependant qu'il n'y a que (m+1)∙(n+1) sous-problèmes distincts. De nombreux 
appels récursifs portent donc sur les mêmes sous-problèmes, d'où l'intérêt de la 
mémoïsation. 
 

https://www.informatique-f1.fr/dp/levenshtein/ 
 

https://www.informatique-f1.fr/dp/levenshtein/
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IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE 

IV.1. Algorithme top-down 

On mémorise les valeurs déjà calculées Di,j dans un dictionnaire, afin de ne jamais recalculer 
deux fois le même sous-problème. 
 

Algorithme top-down (1) pour le calcul des valeurs optimales 

Entrée : S1[1, …, n] : Chaîne source 
S2[1, …, m] : Chaîne cible 

Sortie : distance de Levenshtein d(S1, S2) 

# Dictionnaire de mémoïsation 
D := {}  
 
rec_opt_val_Levenshtein (i, j) : 

# i : longueur du préfixe de S1 
# j : longueur du préfixe de S2 
 
# Utilise la mémoïsation 
Si (i, j) est dans D : 
        Retourner D[(i, j)] 
 
# Cas de base i ==0 et j == 0 
Si i == 0 : 

D[(i, j)] := j 
Retourner D[(i, j)] 

Si j == 0 : 
D[(i, j)] := i 
Retourner D[(i, j)] 

 
# Coût match/substitution 
Si S1[i] == S2[j] : 

c := 0 
Sinon 

c := 1 
 

# Trois possibilités (suppression, substitution/match, insertion) 
V1 := rec_opt_val_Levenshtein (i - 1, j) + 1 
V2 := rec_opt_val_Levenshtein (i - 1, j - 1) + c 
V3 := rec_opt_val_Levenshtein (i, j - 1) + 1 
 
D[(i, j)] := min (V1, V2, V3) 
 
Retourner D[(i, j)] 

 
# Appel initial 
résultat := rec_opt_val_Levenshtein (n, m) 
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On remarque que cet algorithme calcule toujours les valeurs des trois cas, même lorsque 
S1[i] == S2[j]. La table va donc être entièrement remplie. 
 
On peut imaginer alors un algorithme top-down qui ne calcule ni le cas n°1 (suppression) ni 
le cas n°3 (insertion) s’il y a un match : 
 

Algorithme top-down (2) optimisé pour le calcul des valeurs optimales 

rec_opt_val_Levenshtein (i, j) : 
Si (i, j) est dans D : 
        Retourner D[(i, j)] 
 
Si i == 0 : 

D[(i, j)] := j 
Retourner D[(i, j)] 

Si j == 0 : 
D[(i, j)] := i 
Retourner D[(i, j)] 

 
# Match / Substitution 
Si S1[i] == S2[j] : 

 D[(i, j)] := rec_opt_val_Levenshtein (i - 1, j - 1) 
Sinon 

# Trois possibilités (suppression, substitution/match, insertion) 
V1 := rec_opt_val_Levenshtein (i - 1, j) + 1 
V2 := rec_opt_val_Levenshtein (i - 1, j - 1) + 1 
V3 := rec_opt_val_Levenshtein (i, j - 1) + 1 
D[(i, j)] := min (V1, V2, V3) 

 
Retourner D[(i, j)] 

 

IV.2. Complexité de l’algorithme top-down 

Les états possibles sont les couples (i, j) avec 0 ≤ i ≤ n et 0 ≤ j ≤ m, soit au plus (n+1)∙(m+1), 
c’est-à-dire O(n∙m) sous-problèmes. 
 
Avec mémoïsation, chaque (i, j) est calculé au plus une fois et le calcul effectue un travail 
local en O(1) (l’accès aux caractères des chaînes et en O(1) et aux valeurs stockées dans le 
dictionnaire également) et fait au plus 3 appels (vers des états plus petits). La complexité en 
temps est donc de O(n∙m). 
 
L’espace nécessaire pour sauvegarder les informations dans le dictionnaire est O(n∙m). À 
chaque étape, on diminue i ou j (ou les deux). La profondeur de récursion est donc au plus 
de (n + m) et donc la profondeur de la pile est en O(n + m). Le total de l’espace mémoire est 
donc dominé par le dictionnaire et est de O(n∙m). 
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IV.3. Algorithme bottom-up 

L’algorithme bottom-up consiste à remplir progressivement la table des solutions des sous-
problèmes en utilisant la relation de récurrence, en partant des cas de base. 
 

Algorithme bottom-up pour le calcul des valeurs optimales 

Entrée : S1[1, …, n] : Chaîne source 
S2[1, …, m] : Chaîne cible 

Sortie : distance de Levenshtein d(S1, S2) 
 
# Dictionnaire de mémoïsation 
D := {} 
 
opt_val_Levenshtein (S1, S2) : 

# i : longueur du préfixe de S1 
# j : longueur du préfixe de S2 
 
# Cas de base 
Pour j allant de 0 à m : 

D[(0, j)] := j 
Pour i allant de 0 à n : 

D[(i, 0)] := i 
 

# Remplissage de la table 
Pour i allant de 1 à n : 

Pour j allant de 1 à m : 
            Si S1[i] == S2[j] : 

                c := 0 
            Sinon : 

                c := 1 
D[(i, j)] := min(D[(i - 1, j)] + 1, D[(i - 1, j - 1)] + c, D[(i, j - 1)] + 1) 

Retourner D[(n, m)] 

Voici deux exemples de tables remplies avec l’algorithme top-down (2) et bottom-up: 
 
  
 
 
 
 
 
 
 
 
 
 

D Préfixe S2 

0 1 2 3 4 5 

P
ré

fi
xe

 S
1
 

0 0 1 2 3 
  

1 1 0 1 2 3 
 

2 2 1 0 1 2 
 

3 3 2 1 0 1 
 

4 
   

1 1 
 

 5 
     

1 
 

D Préfixe S2 

0 1 2 3 4 5 

P
ré

fi
xe

 S
1
 

0 0 1 2 3 4 5 
1 1 0 1 2 3 4 
2 2 1 0 1 2 3 
3 3 2 1 0 1 2 
4 4 3 2 1 1 2 

 5 5 4 3 2 2 1 
 

Top-down Bottom-up 

Figure 2 : Tables des valeurs optimales top-down (2) (gauche) et bottom-up (droite) 

S1 = "pomme" ; S2 = "pompe" 



COURS : PROGRAMMATION DYNAMIQUE – DISTANCE DE LEVENSHTEIN 

9 

IV.4. Complexité de l’algorithme bottom-up 

L’algorithme bottom-up calcule toutes les cases (i,j) de la table, pour 0 ≤ i ≤ n et 0 ≤ j ≤ m. Il 
effectue donc exactement (n+1)∙(m+1) calculs, chacun en O(1). La complexité en temps et en 
espace est donc de O(n∙m). 

V) ALGORITHME DE RECONSTRUCTION 

V.1. Principe et algorithme de reconstruction 

L’objectif est de reconstruire une suite d’opérations optimales à réaliser dans la chaîne 
source S1 permettant de transformer S1 en S2. On peut reconstruire cette suite d’opérations 
en retraçant le chemin depuis D[n][m] jusqu'à D[0][0].  
 
On part du coin inférieur droit (n, m), l'algorithme regarde quel voisin a permis d'obtenir la 
valeur actuelle D[i][j]. Les opérations à effectuer s’ajoutent à une liste initialement vide. 

Algorithme de reconstruction (compatible top-down optimisé de la page 7) 

Entrée : S1[1, …, n] : Chaîne source 
               S2[1, …, m] : Chaîne cible 
               D = {(i, j) : … }: Dictionnaire / table des valeurs optimales 
Sortie :  Ops[…] : Liste des opérations à effectuer  

Reconstruction (S1, S2, D) : 
Ops := []                      # Liste de vide pour sauvegarder les opérations à effectuer 
i := n 
j := m 
 
Tant que i > 0 ou j > 0 : 

# Cas du match (prioritaire) 
Si i > 0 et j > 0 et D[(i, j)] == D[(i - 1, j - 1)]  et S1[i] == S2[j] : 

Ajouter « Garder S1[i] » à la liste Ops 
i := i - 1 
j := j - 1 

# Cas de la substitution 
Sinon si i > 0 et j > 0 et D[(i, j)] == D[(i - 1, j - 1)] + 1 : 

Ajouter « Substituer S1[i] par S2[j] » à la liste Ops 
        i := i - 1 
        j := j - 1 

# Cas de la suppression 
Sinon si i > 0 et D[(i, j)] == D[(i - 1, j)] + 1 : 

Ajouter « Supprimer S1[i] » à la liste Ops 
        i := i - 1 

# Cas de l'insertion 
Sinon si j > 0 et D[(i, j)] == D[(i, j - 1)] + 1 : 
        Ajouter « Insérer S2[j] » à la liste Ops 
         j := j - 1 

 
Retourner Ops renversée 
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Remarque importante : Avec l'algorithme top-down (2) optimisé, certaines valeurs voisines 
peuvent ne pas exister dans le dictionnaire. En cas de match, seul D[i-1][j-1] a été calculé, 
tandis que D[i-1][j] et D[i][j-1] n'existent pas. Pour garantir la compatibilité avec les deux 
approches, l'algorithme de reconstruction doit tester les cas diagonaux (match et 
substitution) avant les cas de suppression et d'insertion. 
 
On aurait également pu imaginer un algorithme de reconstruction qui vérifie si les clés D[i][j] 
sont disponibles dans le dictionnaire, et les calcule en appelant la fonction récursive en cas 
de besoin (à l’image de ce que nous avions fait pour le tableau partitionné d’entiers positifs). 
 
La figure ci-dessous illustre ce principe de reconstruction avec S1 = "tu" et S2 = "toi" : 
 

 
Figure 3 : Principe de reconstruction de la solution optimale 

 

V.2. Complexité finale 

La reconstruction parcourt au plus (n + m) étapes (à chaque étape, on diminue i ou j ou les 
deux), avec un travail local en O(1). La complexité en temps de la reconstruction est donc de 
O(n + m) et l’espace mémoire utilisé en O(n + m) (si on stocke la liste des opérations). 
 
La complexité totale (calcul + reconstruction) est donc en O (n∙m) + O(n + m) = O(n∙m). 
 
Si on ne veut que la distance (pas la reconstruction), on peut réduire l’espace mémoire de 
O(n∙m) à O(min(n, m)) en ne gardant que la ligne (ou la colonne) précédente. En revanche, 
pour reconstruire une suite d’opérations, il faut en général conserver davantage 
d’informations (table complète). 


