COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

COURS : PROGRAMMATION DYNAMIQUE
= DISTANCE DE LEVENSHTEIN =

Notre cinquiéme étude de cas concerne le probléme du calcul de la distance d'édition entre
deux chaines de caractéres (aussi appelée distance de Levenshtein). Nous allons construire la
solution du probléme par programmation dynamique.

1) DEFINITION DU PROBLEMIEcoueiiiuenitiieisssetsssnestssssessssssessssssesssssssnsssssssssssasnsssssenens 2
1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCEcccceeeeerererneeeesnesnennns 3
[1.1. SOUS-StruCture Optimale.........uiiiiieeee e e e e e e e e e e e enees 3
11.2. Equation de récurrence sur les valeurs optimales............cccovevveeeeeereeeeeeeeeeeeeeeseeeseneeans 4
111) SOUS-PROBLEMES ET COMPLEXITEcceevueirteereeesessessessessessesssssessssssnsssesssssessesssnns 4
[11.1. Définition des SOUS-ProbIEMEScceeviiiiiiiie e 4
[11.2. SChEM@ & FECUISION ...ttt ettt s e e st e e s e s sareeesaneeeas 5
[11.3. Complexité sans MEMOTSATIONueiieiiiiieiiiiee e e e e e 5
IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUEcccovvummmnrreeiiiiiiisnnnnnneeessnssssnnnns 6
IV.1. AlgOrithme tOP-QOWN ... e e e e e e e e e e e e ra e e e e e e e e eennnes 6
IV.2. Complexité de I'algorithme top-dOWNc.uuiiiiiiiiiece e e 7
IV.3. Algorithme BOttOM-UP .o e e e e e e e e e e e e eannes 8
IV.4. Complexité de I'algorithme bottoOmM-UPceeviiiiieiee e 9
V) ALGORITHME DE RECONSTRUCTIONccoiiiiunnreeeeiisiiiiisnnneeesessssssssssssssseeesssssssssssssnsens 9
V.1. Principe et algorithme de reconstruction.........cccvveeieeieeicciiiieeeee e 9
V.2, COMPIEXIEE FINAIE coeeeieeeieeeeee e e e e e e e s e e e e e e e e e e nraneeees 10

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

1) DEFINITION DU PROBLEME

Une instance du probléme est spécifiée par deux chaines de caractéres : une chaine source
S1 de longueur n et une chaine cible S; de longueur m. La tache de l'algorithme est de
trouver le nombre minimal d'opérations élémentaires nécessaires pour transformer S1 en S;.

On autorise trois opérations, chacune de colt 1 (garder un caractére a un colt nul) :
- Insertion d’un caractere dans S; (pour se rapprocher de S;) :
o Ex:siS;="CHAT" et S; = "CHATS", on peut insérer 'S' dans Si.
- Suppression d’un caractere de S :
o Ex:siS;="CHATS" et S; = "CHAT", on peut supprimer 'S' de S;.
- Substitution d’un caractére de S1 par un autre :
o Ex:siS;="CHAT" et S; ="CHOT", on peut remplacer 'A' par 'O".

La distance d’édition d(S1, S2) est le cot minimal (donc le nombre minimal d’opérations)
pour transformer S1 en S,.

Probleme de la distance d’édition (Levenshtein)

Entrée : Deux chaines de caractéres S; et S,.

Sortie : Un entier d(Ss, S2), égal au nombre minimal d’insertions, suppressions et de
substitutions transformant S1 en S,.

Exemple : Soit le calcul de la distance entre S; = "CHIEN" (n=5) et S = "NICHE" (m=5).

Une solution optimale (distance 4) serait :
- Insertion de 'N' — S; = "NCHIEN" (co(t +1)
- Insertion de 'I' > S1 = "NICHIEN" (colt +1)
- Garder 'C' puis grader 'H' — S1 = "NICHIEN" (co(t 0)
- Suppression de 'l' > S; = "NICHEN" (colt +1)
- Suppression de 'N' — S1 = "NICHE" (colt +1)

La distance d'édition a de nombreuses applications pratiques :
- Correction orthographique : suggérer des mots proches d'un mot mal orthographié ;
- Bio-informatique : comparer des séquences ADN ou protéiques pour détecter des
mutations ;
- Détection de plagiat : mesurer la similarité entre deux textes ;
- Reconnaissance vocale : corriger les erreurs de transcription.

Pour résoudre ce probléeme de maniere exhaustive (par brute force), il faudrait tout d’abord
lister toutes les séquences possibles d'opérations, puis pour chacune, vérifier si elle
transforme bien S1 en S;, et enfin garder la plus courte.

La pire facon de transformer S; en S, est de supprimer tous les caractéres de S1 (n
opérations) et d’insérer tous les caractéres de S, dans S1 (m opérations). Le nombre
maximum d’étapes d'une séquence de transformation est donc bornée par (n + m). A
chaque étape, on peut effectuer jusqu'a 3 types d'opérations. Dans le pire des cas, le
nombre de chemins a explorer est de de O(3™*"). C'est un probléme exponentiel qui
demande une approche plus efficace.

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCE

Pour appliquer la programmation dynamique, on doit identifier des sous-problémes
pertinents et une relation de récurrence entre eux, issue de la structure d’une solution
optimale.

II.1. Sous-structure optimale

Considérons une instance du probleme avec une chaine source S; et une chaine cible S,.
Regardons la derniere opération effectuée permettant d’obtenir une transformation
optimale de Si[1..n] en Sy[1..m].

Trois cas sont possibles pour traiter les derniers caractéres des préfixes S1[1..n] et Sy[1..m]
lors de la derniere étape :

Cas n°1 : Suppression du dernier caractéere de S1

Lors de la derniére étape, on a choisi de supprimer le caractére Si[n]. Rechercher le co(t
minimal pour transformer Si[1..n] en S;[1..m] revient dans ce cas a rechercher le co(t
minimal pour transformer Si[1..n-1] en S;[1..m], en y ajoutant le co(it d’'une opération de
suppression (+1) :

coiit (S;[1..n],S,[1..m]) = colit (§;[1..n — 1],5,[1..m]) + 1

Exemple : S;="abc" et S, = "ab"

- Solution optimale pour transformer S1[1..3] en S3[1..2] : supprimer 'c'.

- Co(t final : colt du sous-probléeme {S1[1..2] = "ab", S;[1..2]="ab"} + co(t d’une
suppression (+1).

Cas n°2 : Substitution ou alighement (match) des derniers caractéres de S; et S,.

Lors de la derniere étape, on a choisi soit de substituer le caractére Si[n] par Sz[m] (c’est-a-
dire de remplacer Si[n] par S2[m]), soit d’aligner Si[n] avec Sz[m] (c’est-a-dire de garder Si[n]
tel quel car Si[n] = Sz[m]).

Rechercher le colit optimal de la transformation finale revient dans ces cas a rechercher le
co(t minimal pour transformer Si1[1..n-1] en S;[1..m-1], en y ajoutant éventuellement le colt
de la substitution (+1) si S1[n] # S2[m]. Dans le cas ou Si[n] = S2[m], on n’ajoute pas de co(it
supplémentaire :

cout (§;[1..n],S,[1..m]) |
= cott (Sy[1..n — 1], S,[L..m — 1]) + {O' si S1[n] == S;[m]

1, sinon

Exemple : S1="abc" et S; = "abd"

- Solution optimale pour transformer S1[1..3] en S3[1..3] : substituer 'c' par 'd".

- Co(t final : colt du sous-probleme {S1[1..2] = "ab", S;[1..2]= "ab"} + co(t d’une
substitution (+1).

Exemple : S1="abc" et S, = "abc"
- Solution optimale pour transformer S1[1..3] en S;[1..3] : ne rien faire (match).
- Co(t final : colt du sous-probleme {S1[1..2] = "ab", S;[1..2]= "ab"}.

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

Cas n°3 : Insertion du dernier caractére de S,.

Lors de la derniére étape, on a choisi d’insérer le caractere S;[m] afin d’obtenir le cot
minimal permettant de transformer Si[1..n] en S;[1..m].

Rechercher le colt optimal de la transformation finale revient dans ce cas a rechercher le
co(t minimal pour transformer Si1[1..n] en S;[1..m-1], en y ajoutant le co(t d’'une opération
d’insertion (+1) :

coiit (S;[1..n],S,[1..m]) = colit (§;[1..n],S,[1.m—-1]) +1

Exemple : S;="ab" et S, = "abc"
- Solution optimale pour transformer S1[1..2] en S;[1..3] : insérer 'c'.
- Co(tfinal : colt du sous-probléme {S1[1..2] = "ab", S;[1..2]="ab"} + co(t d’une
insertion (+1).

I1.2. Equation de récurrence sur les valeurs optimales

On note D;jj la distance d’édition minimale entre les i premiers caractéres de Sy et les j
premiers caractéres de S,.

Récurrence sur la valeur de la solution optimale

Pour touti € {0..n} et j € {0..m}, les cas de base sont :
- Do, =] (transformer la chaine vide en j caractéres demande j insertions),
- Dip =i (transformer i caracteres en chaine vide demande i suppressions).

Pourtouti e {1..n}etje {1..m}:

(Di—1, j+1 (casn°l : suppression)
D, = min Dij1+1 ; i i (cas n°3 : insertion)
o) Sto1ltf == 52 09 . o
Di_1j1+ {1‘ sinon (cas n°2 : substitution / match)

I11) SOUS-PROBLEMES ET COMPLEXITE

lll.1. Définition des sous-problemes

Ici, les sous-problémes sont indexés par les paramétres i (longueur du préfixe de S1, de 0 a n)
et j (longueur du préfixe de S;, de 0 am). Quandi=0ouj=0, S1[1..0] et Sz[1..0] sont des
chaines vides.

En faisant varier ces deux parameétres sur toutes les valeurs pertinentes, nous obtenons nos
sous-problémes :

Sous-problémes de la distance de Levenshtein

Calculer Dij, la distance minimale pour transformer le préfixe de longueuride S1 en le
préfixe de longueur j de S,.

(Pourchaquei=0,1,2..netj=0,1,2..m)

Le plus grand sous-probléme (avec i=n et j=m) est exactement le probléme original.

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

111.2. Schéma de récursion

Le schéma de récursion sur un I’'exemple ol on cherche a aligner S1 = "tu" avec S, = "toi" est

donné sur la figure ci-dessous :
- La notation ["tu","toi"] signifie qu’on cherche la solution optimale au probleme qui
consiste a aligner S; = "tu" avec S; = "toi" ;

- La notation D[2][3]=2 signifie que le co(t optimal pour aligner les deux premiers
caracteres de S1 avec les 3 premiers caractéres de S; vaut 2 ;

- Dansle cas n°1 (branches de gauche), a partir des cas de base (en vert), on remonte
la valeur D[i-1][j] + 1 (colt d’une suppression) ;

- Dans le cas n°2 (branches du milieu), a partir des cas de base (en vert), on remonte la
valeur D[i-1][j-1] +1 (si il y a substitution) ou D[i-1][j-1] (si il y a match) ;

- Dans le cas n°3 (branches de droite), a partir des cas de base (en vert), on remonte la
valeur D[i][j-1] + 1 (coGt d’une insertion).

- Lesvaleurs D[i][j] prennent le minimum des valeurs remontées.

s1=my https://www.informatique-fl.fr/dp/levenshtein/

Casn®l: D[2](3]=2 Casn®3: n 0 1 2 3

supp('u’) " ["tu", "toi"] —_ins('i")
, 0 0 1 2 3
241=3 _— —_1+1=2 7
_— 1+1=2| Casn°®2: £ 11 0 1 2
D[1][3]=2 sub/match('u' <> 'i") DRI2I=1 = 2 2 1 1 2
["t" "toi"] ["tu", "to"]
PN D[1][12]=1
341=4_— \‘\1:1=2 ["t", "to"] 141=2 "“\\\14-1:2
_ 2+1=3 S (valeur déja 7 0+1=1 ~—
_ _ _ 4—/ calculée) - -
D[0][3]=3 D[o][2]=2 D[1][2]=1 D[1][2]=1 D[1][1]=0 D[2][1]=1
["”, ”tOI’”] ["”, "tO"] ["t", ”to“] [”t"' "to"J ["t", "t"] [”tl.l", ntu]
a7 - NG _ (valeur (valeur TS
2";{:,3,/ 1+1:2\\\0\t3:1 dejﬂ CalCUléE] déjé calculée?/,/"' \-\\3-%-1:3
-~ s e 1+1=2
D[O}i2]=2 D[O]i]=1 D[1][1]=0 i
["", "to"] [, "t"] ['t", "t"] D[1][1]=0 D[1][0]=1 D[2][0]=2
T ['t", "] ["t", "1 ["tu”, ""]
1+1=2 T =2
e 0+0=0 g

DOJll=1 D[OJ0}0 DI1][0]=1
O B RN O

Figure 1 : Schéma de récursion du probléme de la distance de Levenshtein

l11.3. Complexité sans mémoisation

A chaque étape, on diminue i ou j (ou les deux). La profondeur de récursion est donc au plus
de (n + m). Dans le pire des cas, chaque nceud se ramifie en 3, ce qui donne un arbre de
récursion pouvant contenir jusqu’a O(3"™™) nceuds.

Le travail local a chaque nceud est en O(1) (comparaisons, additions, calcul d’'un minimum),
donc l'algorithme récursif sans mémoisation est exponentiel : O(3™™M).

Remarguons cependant qu'il n'y a que (m+1):(n+1) sous-probleémes distincts. De nombreux
appels récursifs portent donc sur les mémes sous-problemes, d'ou I'intérét de la
mémoisation.

https://www.informatique-f1.fr/dp/levenshtein/

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE
IV.1. Algorithme top-down

On mémorise les valeurs déja calculées Dij dans un dictionnaire, afin de ne jamais recalculer
deux fois le méme sous-probleme.

Algorithme top-down (1) pour le calcul des valeurs optimales

Entrée : S1[1, ..., n] : Chaine source
S2[1, ..., m] : Chaine cible

Sortie : distance de Levenshtein d(S1, S2)

Dictionnaire de mémoisation
D:={}

rec_opt_val_Levenshtein (i, j) :
#i: longueur du préfixe de S1
#j : longueur du préfixe de S2

Utilise la mémoisation
Si(i,j)estdansD:
| Retourner D[(i, j)]

Casdebasei==0et]j==
Sii==0:

DI(i,)] =]
Retourner DI(i, j)]
Sij==

DI(i,)] := i

Retourner DI(i, j)]

Co(t match/substitution
Si S1[i] == S2[j] :

c:=0
Sinon
| c:=1

Trois possibilités (suppression, substitution/match, insertion)
V1 :=rec_opt_val_Levenshtein (i-1,j) +1

V2 :=rec_opt_val_Levenshtein (i-1,j-1) +c

V3 :=rec_opt_val_Levenshtein (i,j-1) +1

DI(i, j)] := min (V1, V2, V3)
Retourner D[(i, j)]

Appel initial
résultat := rec_opt_val_Levenshtein (n, m)

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

On remarque que cet algorithme calcule toujours les valeurs des trois cas, méme lorsque
S1[i] == S;[j]. La table va donc étre entierement remplie.

On peut imaginer alors un algorithme top-down qui ne calcule ni le cas n°1 (suppression) ni
le cas n°3 (insertion) s’il y a un match :

Algorithme top-down (2) optimisé pour le calcul des valeurs optimales
rec_opt_val_Levenshtein (i, j) :
Si (i, j) estdans D :
| Retourner D[(i, j)]

Sii==0:

DI(i, j)] :=]
Retourner D[(i, j)]
Sij==

DI(i, j)] =i
Retourner D[(i, j)]

Match / Substitution
Si S1[i] == S2[j] :
| DI(i, j)] := rec_opt_val_Levenshtein (i- 1, j- 1)
Sinon
Trois possibilités (suppression, substitution/match, insertion)
V1 :=rec_opt_val_Levenshtein (i-1,j)+1
V2 :=rec_opt_val_Levenshtein (i-1,j-1)+1
V3 :=rec_opt_val_Levenshtein (i,j-1)+1
D[(i, j)] := min (V1, V2, V3)

Retourner D[(i, j)]

IV.2. Complexité de I'algorithme top-down

Les états possibles sont les couples (i, j) avec0 <i<net0<j<m,soit au plus (n+1):(m+1),
c’est-a-dire O(n-m) sous-problémes.

Avec mémoisation, chaque (i, j) est calculé au plus une fois et le calcul effectue un travail
local en O(1) (I’acces aux caracteres des chaines et en O(1) et aux valeurs stockées dans le
dictionnaire également) et fait au plus 3 appels (vers des états plus petits). La complexité en
temps est donc de O(n-m).

L’espace nécessaire pour sauvegarder les informations dans le dictionnaire est O(n-m). A
chaque étape, on diminue i ou j (ou les deux). La profondeur de récursion est donc au plus
de (n + m) et donc la profondeur de la pile est en O(n + m). Le total de I'espace mémoire est
donc dominé par le dictionnaire et est de O(n-m).

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

IV.3. Algorithme bottom-up

L'algorithme bottom-up consiste a remplir progressivement la table des solutions des sous-
probléemes en utilisant la relation de récurrence, en partant des cas de base.

Algorithme bottom-up pour le calcul des valeurs optimales

Entrée : S1[1, ..., n] : Chaine source
S2[1, ..., m] : Chaine cible
Sortie : distance de Levenshtein d(S1, S2)

Dictionnaire de mémoisation

D:={}

opt_val_Levenshtein (S1, S2) :
#i: longueur du préfixe de S1
#j:longueur du préfixe de S2

Cas de base

PourjallantdeOam:
| DIO,) =]

PouriallantdeOan:

| D[(i, 0)] :=i

Remplissage de la table
Pouriallantdelan:
Pourjallantdelam:
Si S1[i] == S2[j] :

| c:=0
Sinon :
| c:=1

D[(i, j)] :=min(D[(i-1,j)]+1,D[(i-1,j-1)] + ¢, D[(i,j-1)] + 1)

Retourner D[(n, m)]

Voici deux exemples de tables remplies avec I'algorithme top-down (2) et bottom-up:

S1="pomme" ; S2 = "pompe"
Top-down Bottom-up

3 4 5 3 4 5

o 0 1 2 3 0 0 1 2 3 4 5

o 1 1 0 1 2 3 o 1 1 0 1 2 3 a
[7,] wv
g g

£ 2 2 1 0 1 2 £ 2 2 1 0 1 2 3
o °

& 3 /3 2 1 0 1 & 3/3 2 1 0 1| 2

4 1 1 4 4 3 2 1 1 2

5 1 5 5 4 3 2|21

Figure 2 : Tables des valeurs optimales top-down (2) (gauche) et bottom-up (droite)

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

IV.4. Complexité de I'algorithme bottom-up

L'algorithme bottom-up calcule toutes les cases (i,j) de la table, pour0<i<net0<j<m.ll
effectue donc exactement (n+1)-(m+1) calculs, chacun en O(1). La complexité en temps et en
espace est donc de O(n-m).

V) ALGORITHME DE RECONSTRUCTION

V.1. Principe et algorithme de reconstruction

L’objectif est de reconstruire une suite d’opérations optimales a réaliser dans la chaine
source S1 permettant de transformer S1 en S2. On peut reconstruire cette suite d’opérations
en retracant le chemin depuis D[n][m] jusqu'a D[0][O0].

On part du coin inférieur droit (n, m), I'algorithme regarde quel voisin a permis d'obtenir la
valeur actuelle D[i][j]. Les opérations a effectuer s’ajoutent a une liste initialement vide.

Algorithme de reconstruction (compatible top-down optimisé de la page 7)

Entrée : S1[1, ..., n] : Chaine source

S2[1, ..., m] : Chaine cible

D ={(i, j) : ... }: Dictionnaire / table des valeurs optimales
Sortie : Ops|...] : Liste des opérations a effectuer

Reconstruction (S1,S2, D) :

Ops =] # Liste de vide pour sauvegarder les opérations a effectuer
i:=n

ji=m

Tantquei>0ouj>0:
Cas du match (prioritaire)
Sii>0etj>0etD[(i,j)]==D[(i-1,j-1)] etS1[i] ==S2[j]:
Ajouter « Garder S1[i] » a la liste Ops
i=i-1
j=j-1
Cas de la substitution
Sinonsii>0etj>0etD[(i,j)]==D[(i-1,j-1)]+1:
Ajouter « Substituer S1[i] par S2[j] » a la liste Ops
i=i-1
j=j-1
Cas de la suppression
Sinonsii>0etD[(i,j)]==D[(i-1,j)] +1:
| Ajouter « Supprimer S1[i] » a la liste Ops
i=i-1
Cas de l'insertion
Sinonsij>0etD[(i,j)]==DI[(i,j-1)] + 1:
| Ajouter « Insérer S2[j] » a la liste Ops
j=j-1

Retourner Ops renversée

COURS : PROGRAMMATION DYNAMIQUE — DISTANCE DE LEVENSHTEIN

Remargue importante : Avec I'algorithme top-down (2) optimisé, certaines valeurs voisines
peuvent ne pas exister dans le dictionnaire. En cas de match, seul D[i-1][j-1] a été calculé,
tandis que D[i-1][j] et D[i][j-1] n'existent pas. Pour garantir la compatibilité avec les deux
approches, l'algorithme de reconstruction doit tester les cas diagonaux (match et
substitution) avant les cas de suppression et d'insertion.

On aurait également pu imaginer un algorithme de reconstruction qui vérifie si les clés D[i][]]
sont disponibles dans le dictionnaire, et les calcule en appelant la fonction récursive en cas

de besoin (a I'image de ce que nous avions fait pour le tableau partitionné d’entiers positifs).

La figure ci-dessous illustre ce principe de reconstruction avec S; = "tu" et S; = "toi" :

OnpartdeOps=@;i=2;j=3

Ops =[]
S1="tu"
S2 = "toi" D[2][3] == D[1][2] + 1
. P /””,’”_. Substituer S1[2] ('u') par S2[3] ('i")
Casnl: - pos)=2 Casn°3: =i=i-1(i==1)
supp('u') <I"tu”, "toi"), ins('i') S =ji=j-1(j==2)
2+1=3 e +1= - ° -
+ M Ops = ["Substituer u pari"]
D[1](3]=2 sub/match('u' < 'i') DR2I2)=1
[, "tor' o P, o' {1][2) = D[J1] + 1
7 DM)[2]=1 Insérer S2[2] ('0")
1 1+1=2 ! = =ji=j-1(j==1)
e 241=3 0+1=1 i Ops = ["Substituer u pari" ; "Insérer 0"]
olojsl=3 ololi2l=2 B DI2I=1 oMo Dl2lf=1 !
™ %1%} [, "to"] N [, "to"] ./ ["t", "to"] i o ["tu", "t"] D[1][1] == D[0][0] ET S1[1] ('t') = S2[1] ('t’)
5 2 Garder S1[1] ('t")
2+1=3 14+1=2 Q1= 2+1=3 ;»{::{-i({f: 0)
e SO <R 141=2 =j=j-1(j==0)
DO][2]=2 D[O](1]=1 -~ D[1][1]=0 “¢ 8 Ops = ["Substituer u pari" ; "Insérer 0" ; "Garder t"]
kI L T ST LT olj[u=0 D[o}s1 D[2Jo)=2
P NS ["t","t"] 3 o T | l
141=2 l 1+1=2 i==0etj==0:Inverser Ops
+0=0
poJi11=1 -~ Dl0[0}=0" >\ D[1][0]=1 . o omen gy . -
™", "] ‘\\[w; ne) /,' ["t", "] Ops = ["Gardert" ; "Insérer 0" ; "Substituer u pari"]

Figure 3 : Principe de reconstruction de la solution optimale

V.2. Complexité finale

La reconstruction parcourt au plus (n + m) étapes (a chaque étape, on diminue i ou j ou les
deux), avec un travail local en O(1). La complexité en temps de la reconstruction est donc de
O(n + m) et I'espace mémoire utilisé en O(n + m) (si on stocke la liste des opérations).

La complexité totale (calcul + reconstruction) est donc en O (n-m) + O(n + m) = O(n-m).

Si on ne veut que la distance (pas la reconstruction), on peut réduire I'espace mémoire de
O(n-m) a O(min(n, m)) en ne gardant que la ligne (ou la colonne) précédente. En revanche,
pour reconstruire une suite d’opérations, il faut en général conserver davantage
d’informations (table compléte).

10

