TD : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

TD : PROGRAMMATION DYNAMIQUE
== PLUS LONGUE SOUS-SUITE COMMUNE (LCS) ==

Remarque : les rappels théoriques sont en derniére page de ce sujet.

Le fichier source a utiliser pour ce TD est : « TD3 — LCS.py »

Vous travaillez dans un laboratoire de bio-informatique. Votre mission est de développer un
outil de comparaison de séquences ADN. Le principe est le suivant :
- On dispose de deux séquences ADN (chaines de caracteres composéesde A, C, G, T) ;
- On cherche la plus longue sous-suite commune (LCS) entre ces deux séquences ;
- Cette LCS représente les parties communes héritées d'un ancétre commun ;
- On affiche la sous-suite commune reconstruite pour identifier les genes partagés.

Exemple : Soient deux séquences S1 = "ACGTAC" et S2 = "AGTCAT". La plus longue sous-suite
commune est "AGTA" (longueur 4). Cette sous-suite représente les nucléotides communs,
dans le méme ordre, entre les deux séquences.

L'objectif de ce TD est d'implémenter les algorithmes de programmation dynamique
(approches bottom-up et top-down) pour calculer la longueur de la LCS, puis reconstruire la
sous-suite commune. Vous utiliserez des dictionnaires Python pour mémoriser les résultats
des sous-problemes.

1) APPROCHE BOTTOM-UP (TABULATION)

Dans cette partie, vous allez implémenter I'approche bottom-up qui remplit une table de
tous les sous-problémes, des plus petits aux plus grands.

On utilisera un dictionnaire L pour stocker les valeurs L[(i, j)] représentant la longueur de la
LCS entre les i premiers caracteres de S1 et les j premiers caractéres de S2.

Les données sont déja définies dans le fichier source :

Séquences ADN a comparer
seql = "ACGTAC"

seq2 = "AGTCAT"

L = {} # Table de mémoisation

1. Ecrire une fonction initialiser_cas_de_base(S1, S$S2, L) quiinitialise et retourne le
dictionnaire L avec les cas de base.

Tester: >>> initialiser_cas_de_base(seql,seq2,L)
{6, ®:0, (1, 8): 0, (2, 0):0, (3, : 0, (4, 8): 0, (5, 0): 0,
(6, :0, (0, D: 0, (B, 2): 0, (B, 3): 8, (B, 4): 0, (B, 5: 0,
(0, 6): 0}

2. Ecrire une fonction remplir_table(S1, S2, L) quiremplit entiérement la table L en
utilisant I'équation de récurrence (voir rappels a la fin du sujet). L'ordre de parcours est :
pouriallantde 1 an, et pour chaquei, jallantde 1 a m.

TD : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

Vérifier :

>>> L

>>> L

= initialiser_cas_de_base(seql,seq2,L)

remplir_table(seql, seq2,L)

>>> AfficheTable(seql, seq2,L)

Préfixe S1

Préfixe S2

—
o
=
[\
w
S
wun
[=)]

nlr|lH| 0|0 P

3. Ecrire une fonction lcs_bottomup(S1, S2) qui utilise les fonctions précédentes pour
calculer et retourner la table L et la longueur de la LCS entre S1 et S2.

Vérifier :

>>> seql = "ACGTAC"

>>> seq2 = "AGTCAT"

>>> lcs_bottomup(seql, seq2)
4

4. Ecrire une fonction comparer_sequences(seq_reference, liste_sequences) qui
compare une séquence de référence a une liste de séquences candidates. La fonction
retourne la ou les séquences ayant la plus grande LCS avec la référence, ainsi que la

longueur maximale.

Vérifier :

>>> reference = "ACGTAC"
>>> candidates = ["ACGT", "CGTA", "GTAC", "TACG"]

>>> comparer_sequences(reference,candidates)
(['ACGT', 'CGTA', 'GTAC'], 4)

5. Combien de sous-problémes sont calculés dans I'approche bottom-up pour comparer
deux chaines de longueurs n et m ? Quelle est la complexité temporelle et spatiale de cet

algorithme ?

TD : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

Il) APPROCHE TOP-DOWN AVEC MEMOISATION

Dans cette partie, vous allez implémenter I'algorithme récursif avec mémoisation. L'idée est
de partir du probléme principal L[(n, m)] et de le décomposer en sous-problémes, en
mémorisant les résultats pour éviter les calculs redondants.

On utilisera un dictionnaire défini dans le programme principal pour la mémoisation : L = {}

1. Ecrire une fonction récursive rec_lcs(S1, $2) quiimplémente la récurrence rappelée a
la fin du sujet. Voici un exemple que vous pouvez suivre si vous le souhaitez :

Sinon, calcule les deux possibilités
else:

Mémoise et retourne la valeur optimale

LECL, 3)] = ovviiiiinn..
return L[(i, j)]

longueur = f_rec(n, m)
return longueur

Tester : >>> rec_lcs(seql, seq2)
4

Vérifier la table avec : >>> AfficheTable(seql, seq2,L)

L = {} Préfixe S2
def rec_lcs(S1, S2): jlof1l 3|4
n=...
ms= ... i A T| C
def 'F_PEC(i, J): 0 0 0
Utilise 1la mémoisation
if ... in L: 1| A .
return ... E 5| - -
)
X
Cas de base wl| 3|6 2
if i == 0 or j == 0: a
LICL, 31 = ... AT =
return ... s | A .
Cas du match 6|C 4
i 2
LICL,)] = covvnennnnn.
return

TD : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

2. Comparez les tables obtenues avec les approches bottom-up et top-down (optimisée).
Pourquoi I'approche top-down optimisée calcule-t-elle moins de sous-problémes ? Dans
quel cas cette différence serait-elle plus marquée ?

3. Quelle est la complexité temporelle de I'algorithme top-down avec mémoisation dans le
pire cas ? Quelle est la complexité spatiale (dictionnaire + pile d'appels) ?

IIl) RECONSTRUCTION DE LA SOLUTION

Maintenant que nous savons calculer la longueur de la LCS, nous devons reconstruire la
sous-suite commune elle-méme. Cette étape permet d'identifier précisément quels
nucléotides sont partagés entre les deux séquences ADN.

La reconstruction consiste a « remonter » dans la table L depuis L[(n, m)] jusqu'a L[(O, 0)]
pour déterminer, a chaque étape, quel choix a été fait (voir les rappels a la fin du sujet).

Attention avec I'approche top-down utilisée ici : Lors de la reconstruction, on doit comparer
L[(i, j)] avec ses voisins L[(i-1, j-1)], L[(i-1, j)] et L[(i, j-1)]. Or, avec notre algorithme top-down,
certaines de ces valeurs n'ont pas été calculées ! En effet, quand il y a un match, seul le cas
diagonal L[(i-1, j-1)] est exploré.

Pour éviter ce probleme, il faut tester le cas du match en priorité (cas diagonal avec égalité
des caractéres) avant de tester les autres cas. Ainsi, quand une valeur a été obtenue par un
match, on la détecte immédiatement sans jamais essayer d'accéder aux clés inexistantes.

1. Ecrire une fonction determiner_choix(S1, S2, L, i, j) qui retourne le choix
effectué pour arriver a L[(i, j)].
Cette fonction doit retourner un tuple (choix, new_i, new_j) ou:
- choix est une chaine décrivant le choix ("GARDE X", "LAISSE X", "LAISSE X") ;
- new_i et new_j sont les nouveaux indices apreés le choix.

Tester : >>> determiner_choix(seql, seq2,L,6,6)

('LAISSE C', 5, 6)

>>> determiner_choix(seql,seq2,L,5,5)
('GARDE A', 4, 4)

>>> determiner_choix(seql, seq2,L,4,3)
('GARDE T', 3, 2)

2. Ecrire une fonction reconstruire_lcs(S1, S2, L) qui retourne la plus longue sous-suite
commune sous forme de chaine de caracteres.

Tester : >>> reconstruire_1lcs(seql, seq2,L)
AGTA

3. Quelle est la complexité temporelle de la reconstruction ?

4. Quelle est la complexité finale {Calcul des valeurs optimales + reconstruction} ?

TD : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

RAPPELS THEORIQUES |

Formulation du probleme

Soient deux chaines de caractéres S1 de longueur n et S2 de longueur m. Une sous-suite (ou
sous-séquence) d'une chaine est obtenue en supprimant zéro, un ou plusieurs caracteres,
sans changer |'ordre des caractéres restants.

La plus longue sous-suite commune (LCS) de S1 et S2 est une sous-suite qui apparait dans S1
et dans S2, de longueur maximale.

Sous-problémes et notation
On note Lij la longueur de la LCS entre les i premiers caracteres de S1 (le préfixe S1[1..i]) et
les j premiers caractéres de S2 (le préfixe S2[1..j]).

Relation de récurrence
Pourtouti € {l1..n}etj e {1.m}:

Li_1j-1+1 si S1[i] == S2[j] (cas n°1l — match)

bij = Li—y;

max{ sinon (casn® 2 — pas de match)

Lij_q

Cas de base

Les cas de base sont les suivants :
- Loj=0:lachaine vide n'a aucun caractere commun avec S2.
- Lio=0:S51n'aaucun caractere commun avec la chaine vide.

Algorithme de reconstruction

Une fois la table des valeurs optimales remplie, on reconstruit la solution en « remontant »
depuis Lnm jusqu'a Loo.

Principe : A chaque position (i, j), on détermine quel choix a permis d'obtenir L;j en
comparant avec les valeurs voisines :
- SiLij==Li1j1+ 1 ET S1[i] == S2[j] = Match (on ajoute le caractere a la LCS)
- SiLij==Li1j > Onignore le caractere de S1
- SiLij==Lij1 - Onignore le caractere de S2

