COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

COURS : PROGRAMMATION DYNAMIQUE
= PLUS LONGUE SOUS-SUITE COMMUNE =

Notre quatrieme étude de cas concerne le probléme du calcul de la plus longue sous-suite
commune (en anglais : Longest Common Subsequence ou LCS). Ce probleme classique de
programmation dynamique permet de mesurer la similarité entre deux séquences. Nous
allons construire la solution du probléme par programmation dynamique.

1) DEFINITION DU PROBLEMIEcoueiiiuenitiieisssetsssnestssssessssssessssssesssssssnsssssssssssasnsssssenens
1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCEcccceereeeeruecneeeesnesnenns
[1.1. SOUS-StruCture Optimale.........uiiiiieeee e e e e e e e e e e e enees
11.2. Equation de récurrence sur les valeurs optimales...........cccevevreeveeeeereeeeeeeeeeeseseeseneeas
111) SOUS-PROBLEMES ET COMPLEXITEcceevueirteereeesessessessessessesssssessssssnsssesssssessesssnns
[11.1. Définition des SOUS-ProbIEMEScceeviiiiiiiie e
[11.2. SChEM@ & FECUISION ...ttt ettt s e e st e e s e s sareeesaneeeas
[11.3. Complexité sans MEMOTSATIONueiieiiiiieiiiiee e e e e e
IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUEcccovvummmnrreeiiiiiiisnnnnnneeessnssssnnnns
IV.1. AlgOrithme tOP-QOWN ... e e e e e e e e e e s e eae e e e e e e e sennnes
IV.2. Complexité de I'algorithme top-dOWNc.uuiiiiiiiiiece e e
IV.3. Algorithme BOttOM-UP .o e e e e e e e e e e e e eannes
IV.4. Complexité de I'algorithme bottoOmM-UPceeviiiiieiee e
V) ALGORITHME DE RECONSTRUCTIONccciiiiiunnneeetiiisiiissssneeenessssssssssssssesesssssssssssssnsens
V.1. Principe et algorithme de reCoNStrUCtioNcuvvvieeiieiee e

V.2, COMPIEXIEE FINAIE coeeeeeeiieeeeeee e e e e e e s e e e e e e e s e nareaeees

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

1) DEFINITION DU PROBLEME

Une instance du probléme est spécifiée par deux chaines de caractéres : une chaine S1 de
longueur n et une chaine S2 de longueur m.

Une sous-suite (on dit aussi sous-séquence) d’une chaine est obtenue en supprimant zéro,
un ou plusieurs caractéres, sans changer I'ordre des caractéeres restants (contrairement a
une sous-chaine, elle n’est pas forcément contigué).

Par exemple, si S = "informatique", alors "info", "format", "ique" sont des sous-suites (pas
forcément uniques), et "iatg" aussi (on garde I'ordre, mais on saute des lettres).

La plus longue sous-suite commune de S1 et S2 est une sous-suite qui est sous-suite de S1 et
de S2 et qui a une longueur maximale.

On note généralement LCS(S1, S2) une plus longue sous-suite commune (la séquence), et
£(S1, S2) sa longueur.

Probléme de la plus longue sous-suite commune (LCS)

Entrée : Deux chaines de caractéres S1 et S2.

Sortie : Un entier £ (S1, S2), égal a la longueur de la plus longue sous-suite commune de
S1 et S2.

Exemple : Soient S1 = "ABC" et S2 = "BAC".

Les sous-suites de "ABC" incluent : """, "A", "B", "C", "AB", "AC", "BC", "ABC". Celles de "BAC"
incluent : "", "B", "A", "C", "BA", "BC", "AC", "BAC". Les sous-suites communes les plus
longues ont longueur 2 : par exemple "AC" ou "BC". Donc 8(S1, S2) = 2.

La plus longue sous-suite commune a de nombreuses applications pratiques :

- Bio-informatique : comparer des séquences ADN ou protéiques pour détecter des
similarités évolutives ;

- Comparaison de fichiers : I'algorithme diff (utilisé par Git) s'appuie sur la LCS pour
identifier les lignes modifiées ;

- Détection de plagiat : mesurer la similarité structurelle entre deux textes ;

- Correction orthographique : suggérer des corrections en trouvant des parties
communes.

Pour résoudre ce probléeme de maniere exhaustive (par brute force), il faudrait tout d'abord
lister toutes les sous-suites possibles de S1, puis pour chacune, vérifier si elle est aussi une
sous-suite de S2, et enfin garder la plus longue.

Une chaine de longueur n posséde 2" sous-suites (chaque caractere peut étre inclus ou non).
Vérifier si une sous-suite de longueur k est présente dans S2 se fait en O(m). Dans le pire des
cas, le nombre de vérifications a effectuer est donc de O(m-2"). C'est un probléme
exponentiel qui demande une approche plus efficace.

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCE

Pour appliquer la programmation dynamique, on doit identifier des sous-problémes
pertinents et une relation de récurrence entre eux, issue de la structure d’une solution
optimale.

II.1. Sous-structure optimale

Considérons une instance du probleme avec une chaine S1[1..n] et une chaine S2[1..m].
Regardons les derniers caracteres des deux préfixes pour établir la sous-structure optimale.

Deux cas sont possibles pour traiter les derniers caractéres des préfixes S1[1..n] et S2[1..m] :

Cas n°1 : Les derniers caractéeres sont identiques (match) : S1[n] == S2[m]

Si S1[n] == S2[m], alors ce caractére commun fait nécessairement partie d'une LCS optimale.
En effet, si on avait une LCS qui n'utilisait pas ce caractére commun, on pourrait I'ajouter a la
fin et obtenir une sous-suite commune plus longue.

Rechercher la LCS de S1[1..n] et S2[1..m] revient donc a rechercher la LCS de S1[1..n-1] et
S2[1..m-1], puis a ajouter ce caractére commun :

LCS (S1[1..71],S,[1..m]) = LCS (S;[1..n — 1], S,[1..m — 1]) + 1

Exemple : S1 ="ABC" et S2 = "ADC"
- Les derniers caracteres sont identiques ('C' =="'C').
= LCS("ABC", "ADC") = LCS("AB", "AD") + 1.

Cas n°2 : Les derniers caracteres sont différents (pas de match) : S1[n] # S2[m]

Si S1[n] # S2[m)], alors au moins |'un des deux derniers caracteres ne fait pas partie de la LCS.
On a donc deux sous-cas a explorer :

Sous-cas 2a : Le dernier caractere de S1 ne fait pas partie de la LCS. On cherche alors la
LCS de S1[1..n-1] et S2[1..m].

Sous-cas 2b : Le dernier caractére de S2 ne fait pas partie de la LCS. On cherche alors la
LCS de S1[1..n] et S2[1..m-1].

La LCS optimale est le maximum de ces deux possibilités :

LCS(Sy[1..n — 1], S,[1..m])

LCS (51[1..n],S,[1..m]) = max {ch(51[1_ .n],S,[1..m — 1])

Exemple : S1 ="ABC" et S2 = "ABD"
- Les derniers caracteres sont différents ('C' # 'D').
— LCS("ABC", "ABD") = max{LCS("AB", "ABD"), LCS("ABC", "AB")}.

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

I.2. Equation de récurrence sur les valeurs optimales

On note Lij la longueur de la LCS entre les i premiers caracteres de S1 et les j premiers
caracteres de S2.

Remarque : Si S1[i] == S2[j], alors toute sous-suite commune optimale pour S1[1..i] et S2[1..j]
peut étre supposée se terminer par ce caractére commun. On obtient donc directement

Lij=Li1j1+1
Il est alors inutile de calculer les deux autres candidats Li.1j et Lij1 : ils correspondent a

« ignorer » I'un des deux caractéres, ce qui ne peut pas donner mieux qu’utiliser ce match et
prolonger une solution optimale sur les préfixes (i-1, j-1).

Récurrence sur la valeur de la solution optimale

Pour touti € {0..n} et j € {0..m}, les cas de base sont :
- Loj=0 (la chaine vide n'a aucun caractére commun avec S2),
- Lio=0(S51n'aaucun caractere commun avec la chaine vide).

Pourtouti e {1..n}etje {1..m}:
(Lic1j-1t1 si S1[i] == S2[j] (cas n°1 — match)

Li i —
J Li_q;
max{ o sinon (casn®2 — pas de match)

Lij_1

1) SOUS-PROBLEMES ET COMPLEXITE

lll.1. Définition des sous-problemes

Ici, les sous-problémes sont indexés par les paramétres i (longueur du préfixe de S1, de 0 a n)
et j (longueur du préfixe de S2, de 0 a m). Quand i=0ouj=0, S1[1..0] et S2[1..0] sont des
chaines vides.

En faisant varier ces deux parametres sur toutes les valeurs pertinentes, nous obtenons nos
sous-problémes :

Sous-problémes de la plus longue sous-suite commune

Calculer Lij, la longueur de la LCS entre le préfixe de longueur i de S1 et le préfixe de
longueur j de S2

(Pour chaquei=0,1,2..netj=0,1,2.. m)

Le plus grand sous-probléme (avec i=n et j=m) est exactement le probléme original.

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

111.2. Schéma de récursion

Le schéma de récursion complet sur un exemple ol on cherche la LCS entre S1 ="on" et S2 =
"bon" est donné sur la figure ci-dessous. Comme on le verra apreés, I'algorithme top-down ne
calculera pas tous ces cas mais ils sont montrés ici pour illustrer le probléme dans son
ensemble :
- La notation ["on","bon"] signifie qu’on cherche la longueur optimale pour S1 ="on"
et S2 ="bon";
- La notation L[2][3] = 2 signifie que la longueur de la LCS entre les 2 premiers
caracteres de S1 et les 3 premiers de S2 vaut 2 ;
- Dansle cas n°1 (branche de gauche), a partir des cas de base (en vert), on remonte la
valeur L[i-1][j-1] + 1 si S1[i] == S2[j] ;
- Dans les deux sous-cas n°2a et n°2b (branches de droite), a partir des cas de base (en
vert), on remonte la valeur L[i-1][j] (sous-cas 2a) et L[i][j-1] (sous-cas 2b).
- Lesvaleur L[i][j] prennent le maximum des valeurs remontées.

https://www.informatique-f1.fr/dp/SousSuiteCommune/

S1="on"
S2 ="bon"
Casn’l: Casn®2b:
stal=s23 - MR saletcs E
=2 ["on", "bon"] —
‘Casn°23: @ 000 0o
S1[2] ¢ LCS — v
L1t 1] e ST
["0", "bo"] L[l][é]:l ["on", "bo"] & 2 g 01 2
0+1=1_~ T -0 ["o", "'_3_0““] 0+0=0
e 0 ~ 0+0=0_-~ 1 e 1 -
L{o][1]=0 Loj(2=0 L[1][1]=0 - 0 20 L[)2]=1 L[2]{1)=1
[, "p’] [*", "bo"] [0, "b"] L[0][2]=0 L[0][3]=0 L[1][2]=1 ["o", "b"] ["o", "bo"] ["on", "b"]
) [, "bo"] ["", "bon"] ["o", "bo"] (Valeurs déja calculées)
0+0=0-" ¢ "9_‘ (Valeur déja calculée) 0
. 040=0_~ 0
L[0][0]=0 L[0][1]=0 L[1][0]=0 I ™
o B [t ™) L{1][0]=0 L1][1]=0 L{2][0]=0
["o", "] ["o™ "] ["on". "™

(Valeur déja calculée)

Figure 1 : Schéma de récursion du probléme de la sous-suite maximale

l11.3. Complexité sans mémoisation

A chaque étape, on diminue i ou j (ou les deux). La profondeur de récursion est donc au plus
(n+m).

Dans le pire des cas (quand S1[i] # S2[j] presque partout), chaque nceud se ramifie en 2, ce
qui donne un arbre de récursion pouvant contenir jusqu’a O(2™™) noceuds (ordre de grandeur
exponentiel).

Le travail local a chaque nceud est en O(1) (comparaisons, max, +1), donc l'algorithme
récursif sans mémoisation est exponentiel.

Remarquons cependant qu'il n'y a que (n+1):(m+1) sous-problémes distincts. De nombreux
appels récursifs portent donc sur les mémes sous-problemes, d'ou I'intérét de la
mémoisation.

https://www.informatique-f1.fr/dp/SousSuiteCommune/

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE
IV.1. Algorithme top-down

On mémorise les valeurs déja calculées Lij dans un dictionnaire, afin de ne jamais recalculer
deux fois le méme sous-probleme.

Algorithme top-down pour le calcul des valeurs optimales

Entrée : S1[1, ..., n] : Chaine S1
S2[1, ..., m] : Chaine S2

Sortie : € (S1, S2)

Dictionnaire de mémoisation

L:={}

rec_opt_val_LCS (i, j) :
#i: longueur du préfixe de S1
#j : longueur du préfixe de S2

Utilise la mémoisation
Si (i, j) estdans L:
| Retourner L[(i, j)]

#Casdebasei==0ouj==0
Sii==0ouj==0:
| LI, j)] =0

Retourner L[(i, j)]

Cas 1 (match)
Si S1[i] == S2[j] :

L[(i, j)] :==rec_opt_val_LCS(i-1,j-1)+1
Sinon

Cas2aet2b

V1 :=rec_opt_val LCS(i-1,]j)

V2 :=rec_opt_val_LCS (i,j-1)

L[(i, j)] := max (V1, V2)

Retourner L[(i, j)]

Appel initial
résultat := rec_opt_val_LCS (n, m)

Avec cet algorithme, seuls les cas réellement utiles sont calculés (voir la remarque en page 4
sur I’équation de la récurrence)

Le schéma de récursion en page suivante montre quels sont les cas réellement calculés dans
le méme exemple que précédemment ainsi que les valeurs enregistrées dans la table de
mémoisation.

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

s 52 = "bon"
i o 0 Casn°l: ey -, Casn’2b:
g 1 51[2]==52(3] J U2BI=2 N s3] Lcs
5 141=2 ~J"on", "bon"].’ — L
= | 2 2 “~Casn°2a: T
e — /s1[2] ¢ LCS —
;7 LRI 1 L2)(21-1
_[ND , |J—0_l,’ L1I31=1 ["on", "ba"]

AT 1" "hon T
0+1=1 ~.0 ['o .l:ion 1 0r0m0 1
0 ~ 0+0=0_— - N - 1 .

o TS 0 - ~
¢ toi=0 s L0][2]=0 - L[1][1]=0 : Uit=o u1)el=1 L[2][1)=1

SR P e Lo][2=0 L[0][3]=0 L[1][2]=1 ["o""6"] ['0""bo"] ['on","b"]
ToeeT N ["","bo"] ["", "bon"] ["o", "bo"] (Valeurs déja calculées) T
0+0=0 " ¢ ~9 (Valeur déja calculée) - T 0
- ~ 0+0=0_~" 0 ~3
L[0][0]=0 L[0][1]=0 L[1][0]=0 -
", " ", "b"] ["o", "] L[1][0]=0 L[1][1]=0 L[2](0]=0
["o", "] ["0","b"] ["on™, "]

(Valeur déja calculée)

Figure 2 : Application de I'algorithme top-down et table de mémoisation associée

IV.2. Complexité de I'algorithme top-down

Les états possibles sont les couples (i, j) avec 0 <i<net0<j<m,soit au plus (n+1)-(m+1),
c’est-a-dire O(n-m) sous-problémes.

Avec la mémoisation, chaque (i, j) est calculé au plus une fois, et le calcul effectue un travail
local en O(1). La complexité en temps est donc O(n-m).

L’espace nécessaire pour sauvegarder les informations dans le dictionnaire est O(n-m).
La profondeur de récursion est au plus (n + m), donc la pile est en O(n + m). L’espace total
est dominé par le dictionnaire : O(n-m).

IV.3. Algorithme bottom-up

L'algorithme bottom-up consiste a remplir progressivement la table des solutions des sous-
problémes en utilisant la relation de récurrence, en partant des cas de base.

Algorithme bottom-up pour le calcul des valeurs optimales
opt_val_LCS (i, j) :
Casdebasei==0ouj==
PourjallantdeOam:

L[(O, j)] =0
PouriallantdeOan:
| L[(i,0)]:=0

Remplissage de la table
Pouriallantdelan:
Pourjallantdelam:
Si S1[i] == S2[j] :
| LG =Li-1,j-1)]+1
Sinon :
| LL(i, j)] = max(L[(i - 1, j)], LI(i, j - 1)])

Retourner L[(n, m)]

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

IV.4. Complexité de I'algorithme bottom-up

L'algorithme bottom-up calcule toutes les cases (i, j) pour0<i<net0<j<m, soit
exactement (n+1):(m+1) calculs, chacun en O(1). La complexité en temps et en espace est
donc O(n-m).

V) ALGORITHME DE RECONSTRUCTION

V.1. Principe et algorithme de reconstruction

Jusqu’ici, on a calculé la longueur £€(S1, S2). L’objectif est maintenant de reconstruire une
plus longue sous-suite commune (pas seulement sa longueur).

On peut reconstruire une LCS en retragant un chemin depuis L[n][m] jusqu'a L[0][O0] :
- Si S1[i] == S2[j], alors ce caractere appartient a une LCS : on I’ajoute, puis on va en
(i-1, j-1).
- Sinon, on regarde quel voisin (i-1, j) ou (i, j-1) conserve la valeur optimale, et on se
déplace vers lui.

Remarque : la LCS n’est pas forcément unique. En cas d’égalité entre L[i-1][j] et L[i][j-1],
différents choix de déplacement peuvent conduire a différentes LCS, toutes de longueur
maximale.

Algorithme de reconstruction

Entrée : S1[1, ..., n] : Chalne S1

S2[1, ..., m] : Chaine S2

L={(i, j) : ... }: Dictionnaire / table des valeurs optimales
Sortie : Seq]...] : Une LCS (liste de caracteres)

Reconstruction (S1, S2, D) :
Seq :=]

i:=n

ji=m

Tantquei>0etj>0:

Cas du match (prioritaire)

Si S1[i] == S2[j] et L[(i, j)] == L[(i- 1,j- 1)] + 1:
Ajouter S1[i] a la liste Seq
i=i-1
j=j-1

Cas 2a

Sinonsi L[(i- 1,)] >=L[(i,] - 1)]

| i=i-1

Cas 2b

Sinon :

| j=j-1

Retourner Seq renversée

COURS : PROGRAMMATION DYNAMIQUE — PLUS LONGUE SOUS-SUITE COMMUNE

Remargue importante : avec I'algorithme top-down proposé, certaines valeurs voisines
peuvent ne pas exister dans le dictionnaire. En effet, en cas de match, seul L[i-1][j-1] a été
calculé, tandis que L[i-1][j] et L[i][j-1] n'existent pas.

Pour garantir la compatibilité, I'algorithme de reconstruction doit tester le cas du match en
priorité.

La figure ci-dessous illustre ce principe de reconstruction avec S1 ="on" et S2 = "bon" :

OnpartdeSeq=&;i=2;j=3

Seq =[]
s1="on"
S[2]==S[3] ET L2][3] == L[1][2] +1 52 ="bon"
= Ajouter 51[2] {'n') a Seq Casn®l: Lem T Casn™2b:
=im=i-1(i=1) s1[2)==52[3] ooL2lE)=2 52[3] ¢ LCS
=j=j-1(==2) + ["en", "bon"]
1+1=2 Sl 1
Seq=["n"] / “[eas re2a
l PO s1[2] & LCS
T 1 L[2]2]=1
s[1] == S[2] ET L[1][2] == L[0][1] + 1 y 10" "bo"]

) . ["on”, "bo"]
= Ajouter $1[1] ('0') & Seq - L[1)[3)=)

L 1

=i=i-1(i==0) 0+1=1 0 ("o", "bon"] 04020 1
=j=j-1(j==1) 0 04+0=0 | 1 1 N
| Lo lo

L{0][2]=0 L[1](1]=0

o T RN Lo L2)=1 U2fy=1
Seq = ["no] L _))/, ["", "bo"] ["o", "b"] E[lp]!‘z]:lc‘; "LI[‘EI]”[3]:[‘)I L[1][2]=1 ["o", "b"] ["o", "ba"] ["on”, "b"]
l) ‘——4—,/ [, "bo"] ["","bon"] ["o", "bo"] (valeurs déja calculées) T
i==0; Inverser Seq 0 g
0+0=0 0 (Valeur déja calculée) . ~._0
seq = ["'no" 0+0=0 0
q=["no"]
L[0][0]=0 L[0](1]=0 L[1]{0]=0
) ["o", "] L[1][0)=0 L[1][1]=0 L[2][0]=0
["o" "1 I'e", "5"] [on”, "]

(Valeur déja calculée)

Figure 3 : Principe de reconstruction de la solution optimale

V.2. Complexité finale

La reconstruction parcourt au plus (n + m) étapes (a chaque étape, on diminue i ou jou les
deux), avec un travail local en O(1). Le temps de reconstruction est donc de O(n + m) et
I’espace de reconstruction est O(n + m) si on stocke la séquence reconstruite.

La complexité totale (calcul + reconstruction) est donc de O(n-m) + O(n + m) = O(n-m).

Si on ne veut que la longueur €(S1, S2) (pas la reconstruction), on peut réduire I'espace de
O(n-m) a O(min(n, m)) en ne gardant que la ligne (ou colonne) précédente. En revanche,
pour reconstruire une sous-suite, il faut en général conserver davantage d’informations
(table compléte ou informations de parenté).

