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TD : PROGRAMMATION DYNAMIQUE 
== PROBLÈME DU SAC À DOS == 

 
Remarque : les rappels théoriques sont en dernière page de ce sujet. 

Le fichier source à utiliser pour ce TD est : « TD2 – SacADos.py » 
 
Un randonneur prépare son sac à dos pour une expédition en montagne. Il dispose de 
plusieurs équipements, chacun ayant une valeur d'utilité (importance pour la randonnée) et 
un poids. Son sac à dos a une capacité maximale limitée, et il souhaite emporter les 
équipements qui maximisent la valeur totale d'utilité tout en respectant la contrainte de 
poids. 
 

Objet Équipement Valeur Poids (kg) 
1 Tente légère 7 4 
2 Sac de couchage 5 3 
3 Réchaud + gamelle 3 2 
4 Nourriture (3 jours) 6 5 
5 Trousse de secours 4 2 

 
La capacité maximale du sac à dos est C = 10 kg. L'objectif est de trouver le sous-ensemble 
d'équipements qui maximise la valeur totale tout en respectant cette contrainte de poids. 
 
L'objectif de ce TD est d'implémenter les algorithmes de programmation dynamique 
(approches bottom-up et top-down) pour résoudre ce problème, puis reconstruire la 
solution optimale. Vous utiliserez des dictionnaires Python pour mémoriser les résultats des 
sous-problèmes 

I) APPROCHE BOTTOM-UP (TABULATION) 

Dans cette partie, vous allez implémenter l'approche bottom-up qui remplit une table de 
tous les sous-problèmes, des plus petits aux plus grands. Les données sont déjà définies dans 
le fichier source sous la forme d’un dictionnaire objets = {n°objet:(Valeur, Poids)} : 
 

objets = {1:(7,4),2:(5,3),3:(3,2),4:(6,5),5:(4,2)} 
C = 10    # Capacité maximale 
A = {}    # Table de mémoïsation 

 
1. Écrire une fonction initialiser_table(A, objets, C) qui initialise le dictionnaire 

représentant la table A. La fonction doit uniquement initialiser les cas de base : 
- A[(0, c)] = 0 pour tout c de 0 à C (aucun objet disponible) 
- A[(i, 0)] = 0 pour tout i de 0 à n (capacité nulle) 

 
2. Écrire une fonction remplir_table(A, objets, C) qui remplit entièrement la table A 

en utilisant l'équation de récurrence du cours et qui est rappelée à la fin du sujet. 
Attention à l'ordre de parcours : on doit calculer A[(i, c)] pour i allant de 1 à n, et pour 
chaque i, c allant de 1 à C. 
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Vérifier :  >>> AfficheTable(A,objets,C) 

 

5. Combien de sous-problèmes sont calculés dans l'approche bottom-up ? Quelle est la 
complexité temporelle de cet algorithme ? 

II) APPROCHE TOP-DOWN AVEC MÉMOÏSATION 
Dans cette partie, vous allez implémenter l'algorithme récursif avec mémoïsation. L'idée est 
de partir du problème principal et de le décomposer en sous-problèmes, en mémorisant les 
résultats pour éviter les calculs redondants. 

On utilisera un dictionnaire global pour la mémoïsation : A = {} 

1. Écrire une fonction récursive rec_opt_val(i, c) qui implémente la récurrence avec 
mémoïsation rappelé à la fin du sujet. 

 
Tester :  >>> rec_opt_val(0,0)  >>> rec_opt_val(0,10) 

0     0 

>>> rec_opt_val(3,3)  >>> rec_opt_val(3,5) 
5     8 

 
2. Initialiser le dictionnaire de la table puis appeler la fonction précédente afin de chercher 

la valeur optimale. Vérifier votre table : 
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3. Comparez les tables obtenues par les approches bottom-up et top-down. Que constatez-
vous concernant le nombre de cases remplies ? Expliquez cette différence. 

 
4. Quelle est la complexité temporelle de l'algorithme top-down avec mémoïsation ? 

Justifiez votre réponse en considérant le nombre de sous-problèmes distincts et le coût 
de chaque sous-problème. 

 
5. Quelle est la complexité spatiale de cet algorithme ? Prenez en compte à la fois le 

dictionnaire de mémoïsation et la pile d'appels récursifs. 
 

III) RECONSTRUCTION DE LA SOLUTION 

Maintenant que nous connaissons la valeur optimale, nous devons déterminer quels 
équipements le randonneur doit emporter. Cette étape s'appelle la reconstruction de la 
solution. 
 
La reconstruction consiste à « remonter » dans la table A pour déterminer, à chaque étape, 
si l'objet i a été pris ou non. On part de A[(n, C)] et on remonte jusqu'à i = 0. 
 
1. Écrire une fonction objet_pris(A, objets, i, c) qui retourne True si l'objet i a été 

pris pour obtenir la valeur A[(i, c)], False sinon. 
 
Tester :  >>> objet_pris(A,5,10)   >>> objet_pris(A,4,8) 

True      False 
 
2. Écrire une fonction reconstruire_solution(A, objets, C) qui retourne la liste des 

indices des objets faisant partie de la solution optimale. 
 
Vérifier :  >>> reconstruire_solution(A,objets,C) 

[5, 2, 1] 
 
3. Quelle est la complexité temporelle de l'algorithme de reconstruction ? 
 
4. Vérifiez que la solution obtenue respecte bien la contrainte de capacité. Que remarquez-

vous concernant le poids total par rapport à la capacité maximale ? 
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RAPPELS THÉORIQUES 

 
Formulation du problème 

Une instance du problème du sac à dos est spécifiée par (2n + 1) entiers positifs, où n est le 
nombre d'objets : une valeur vi et une taille si pour chaque objet i, ainsi qu'une capacité C du 
sac à dos. 
 
La tâche de l'algorithme est de sélectionner un sous-ensemble S d'objets tel que la valeur 
totale ∑ 𝑣𝑖𝑖∈𝑆  soit maximale, sous la contrainte que la taille totale ∑ 𝑠𝑖𝑖∈𝑆  soit au plus C. 
 
Sous-problèmes et notation 

On définit le sous-problème Ai,c comme suit : 
- Ai,c = valeur totale maximale d'un sous-ensemble des i premiers objets dont la taille 

totale est au plus c. 
- Quand i = 0, on interprète A0,c comme étant 0. 

 

Relation de récurrence 

Pour calculer Ai,c, on distingue deux cas selon que l'on prend ou non l'objet i : 
- Cas n°1 (on ne prend pas l'objet i) : Ai,c = Ai-1,c 
- Cas n°2 (on prend l'objet i) : Ai,c = Ai-1,c-si + vi 

 
La récurrence s'écrit donc : 

𝐴𝑖,𝑐 = {

𝐴𝑖−1,𝑐  𝑠𝑖 > 𝑐

𝑚𝑎𝑥 {
𝐴𝑖−1,𝑐

𝐴𝑖−1,𝑐−𝑠𝑖
+ 𝑣𝑖

}  𝑠𝑖 ≤ 𝑐
 

Cas de base 

Les cas de base sont les suivants : 
- A0,c = 0 pour tout c : aucun objet disponible, valeur nulle. 
- Ai,0 = 0 pour tout i : capacité nulle, on ne peut prendre aucun objet. 

 
Algorithme de reconstruction 

Une fois la table A remplie, on reconstruit la solution optimale en « remontant » dans la 
table depuis An,C jusqu'à i = 0. 
 
Principe : Pour chaque objet i (de n à 1), on détermine s'il a été pris ou non : 

- Si Ai,c ≠ Ai-1,c, l'objet i a été pris. On l'ajoute à la solution et on met à jour c := c - si. 
- Sinon, l'objet i n'a pas été pris. On passe à l'objet suivant sans modifier c. 

 
 
 
 
 
 
 
 


