COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

COURS : PROGRAMMATION DYNAMIQUE
= LE PROBLEME DU SAC A DOS =

Notre troisieme étude de cas concerne le probleme du sac a dos. Nous allons construire la
solution du probléme par programmation dynamique.

1) DEFINITION DU PROBLEMEcoueuirineinrueisssetsssnesssssesssssessssssesssssssnssssssssssssensssssenees
1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCEccceeeerererererressessesaenns
[1.1. SOUS-StruCtUre OPtiMale.......eeeieieeee e e e e e e e e e e eanees
11.2. Equation de récurrence sur les valeurs optimales............ccccoveuvueveeeeireeeeeereeeeeeeseeeseneeans
111) SOUS-PROBLEMES ET COMPLEXITEcceeeeeirieereeesessessessessessesssssessssssnsssssssssessessenns
[11.1. Définition des SOUS-ProbIEMEScoieciviiiiiiiie e e
[11.2. SChEM@ @ FECUISION ...ttt ettt st e s s e s sareessaneeeas
[11.3. Complexité sans MEMOTSATIONueiieiiiiie e e e e
IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUEcccoovummnrreeiiiiisisinnnnneeeessssssnnnns
IV.1. AlgOrithme tOP-QOWN ... e e e e et e e e e e s e snarea e e e e e e e e ennnnes
IV.2. Complexité de I'algorithme top-dOWNc.uviiiiiiiii e e
IV.3. Algorithme BOttOM-UP .o e e e e e e e e e e e e e eannes
IV.4. Complexité de I'algorithme bottomM-Upc.eeeiiiiiiiiiee e
V) ALGORITHME DE RECONSTRUCTIONccoiiiiunnrreeeiiisiiiissnneeeeessssssssssssssseeessssssssssssnsens
V.1. Principe et algorithme de reCoNStrUCtioNccvvvieeieeiee e

V.2, COMPIEXIEE FINAIE ceeeeeeeieeeeeeee e e e e e e s rr e e e e e e e e s e anaraaeees

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

1) DEFINITION DU PROBLEME

Une instance du probléme du sac a dos est spécifiée par (2n + 1) entiers positifs, ol n est le
nombre d’objets (qui sont étiquetés arbitrairement de 1 a n) : une valeur v; et une taille s;
pour chaque objet i, ainsi gu’une capacité C du sac a dos.

La tache de 'algorithme est de sélectionner un sous-ensemble d’objets. La valeur totale des
objets doit étre aussi grande que possible tout en tenant dans le sac a dos, ce qui signifie que
leur taille totale doit étre au plus égale a C.

Probléme du sac a dos
Entrée : les valeurs des objets vi, va, ..., Vn, les tailles des objets s1, s2, ..., Sn, €t Une

capacité C du sac a dos (tous des entiers positifs).

Sortie : un sous-ensemble S € {1, 2, ..., n} d’objets tel que la somme des valeurs
Y.ies V; soit maximale, sous la contrainte que la taille totale)}, s; soit au plus C.

Exemple : soit un probléme du sac a dos avec une capacité de sac C = 6 et quatre objets :

Objet | Valeur | Taille
1 3 4
2 2 3
3 4 2
4 4 3

Comme la capacité du sac a dos est de 6, il n’y a pas de place pour choisir plus de deux
objets. La paire d’objets la plus intéressante (la plus grande valeur) est constituée du
troisieme et du quatrieme (avec une valeur totale de 8), et ceux-ci tiennent dans le sac a dos
(avec une taille totale de 5).

Chaque fois qu’on a une ressource rare que I’on veut utiliser de la maniere la plus
intelligente possible, c’est un probléme de sac a dos. Par exemple, sur quels biens et services
dépenser son salaire pour en tirer le maximum de valeur ? Ou encore, étant donné un
budget de fonctionnement et un ensemble de candidats a I'embauche avec des
productivités différentes et des salaires demandés variés, lesquels recruter ?

Pour résoudre ce probléme de maniére exhaustive (par brute force), il faut :
- Lister tous les sous-ensembles possibles d’objets ;
- Pour chacun, calculer la taille totale, vérifier si cela tient dans le sac, puis regarder la
valeur totale ;
- Garder le meilleur.

Pour n objets, il y a 2" sous-ensembles possibles (chaque objet est soit pris, soit non pris).
Pour chaque sous-ensemble, calculer les tailles et les valeurs colte O(n). Au total, la
complexité du probléeme est donc de O(n-2"). C'est un probléme exponentiel en n qui
demande un espace mémoire en O(n) pour stocker le sous-ensemble courant et le meilleur
trouvé.

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

1) SOUS-STRUCTURE OPTIMALE ET RELATION DE RECURRENCE

Pour appliquer le principe de la programmation dynamique au probléme du sac a dos, nous
devons déterminer la bonne collection de sous-problémes. Nous y parviendrons en
raisonnant sur la structure des solutions optimales et en identifiant les différentes fagons
dont elles peuvent étre construites a partir de solutions optimales de sous-problémes plus
petits.

Nous pourrons ensuite établir une relation de récurrence permettant de calculer rapidement
la solution d’un sous-probléme a partir de celles de deux sous-problémes plus petits.

Il.1. Sous-structure optimale

Considérons une instance du probleme du sac a dos avec les valeurs des objets v1, va, ..., Vn,
les tailles des objets s1, s2, ..., Sn €t une capacité de sac C. Supposons que quelqu’un nous
donne, sur un plateau, une solution optimale S € {1, 2, ..., n} de valeur totale V = }¥;cs v;. A
qguoi doit-elle ressembler ?

Commencons par nous demander : soit S contient le dernier objet (I’'objet n), soit elle ne le
contient pas:

Cas n°1:n ¢ S :supposons que la solution optimale S ne contient pas le dernier objet n.

Comme la solution optimale S exclut le dernier objet, on peut la considérer comme une
solution réalisable (toujours avec une valeur totale V et une taille totale au plus égale a C) du
probléme plus petit ne comportant que les (n — 1) premiers objets (et une capacité de sac C).

Cas n°2 : n € S : supposons que la solution optimale S contient le dernier objet n.

Ce cas ne peut se produire que lorsque s, < C. Nous ne pouvons pas considérer S comme une
solution réalisable a un probléme plus petit ne comportant que les (n — 1) premiers objets,
mais nous le pouvons apreés avoir retiré I'objet n. Dans ce cas, S — {n} est une solution
optimale a un sous-probléme plus petit, constitué des (n — 1) premiers objets et d’une
capacité de sac C — sy, avec une valeur totale V — vn.

I1.2. Equation de récurrence sur les valeurs optimales

Nous avons vu que si S est une solution optimale d’un probléme de saca dosavecn >1
objets, de valeurs vi, vy, ..., vn, de tailles s, s, ..., sn et de capacité de sac C, alors S est soit :
- une solution optimale pour les (n — 1) premiers objets avec une capacité de sac C,
- une solution optimale pour les (n — 1) premiers objets avec une capacité de sac C — sp,
complétée par le dernier objet n.

La premiere solution est toujours une possibilité pour la solution optimale. La seconde
solution est une possibilité si et seulement si s, < C. Dans ce cas, sn unités de capacité sont
effectivement réservées a I’'avance pour I'objet n. L'option ayant la valeur totale la plus
grande est une solution optimale.

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

Cela conduit a la relation de récurrence suivante :

Récurrence sur la valeur de la solution optimale

Notons Vi la valeur totale maximale d’un sous-ensemble des i premiers objets dont la
taille totale est au plus c. (Quand i =0, on interprete Vic comme étant 0).
Pourtouti=1,2, .., nettoutc=0,1,2,..,C:

Vi—l,c Si >cC

Vv
Le maxiVi_ic,Vicicos; T Vig Si<¢
S—— N ———

casn°l cas n°2

1) SOUS-PROBLEMES ET COMPLEXITE

lll.1. Définition des sous-problemes

L’étape suivante consiste a définir la collection de sous-problémes pertinents et a les
résoudre systématiquement en utilisant la relation de récurrence. Pour I'instant, nous nous
concentrons sur le calcul de la valeur totale d’une solution optimale pour chaque sous-
probleme. Nous pourrons reconstruire les objets d’une solution optimale du probleme
original a partir de ces informations.

Pour le probléme du sac a dos, nous voyons que les sous-problémes doivent étre paramétrés
par deux indices : la longueur i du préfixe des objets disponibles et la capacité c disponible
du sac a dos.

En faisant varier ces deux paramétres sur toutes les valeurs pertinentes, nous obtenons nos
sous-problémes :

Sous-problémes du sac a dos

Calculer Vi, la valeur totale d’une solution optimale au probleme du sac a dos utilisant
les i premiers objets et une capacité de sac c.

(Pour chaquei=0,1,2,..,netc=0,1,2,..,0C)

Le plus grand sous-probléme (avec i = n et ¢ = C) est exactement le méme que le probléme
original. Comme toutes les tailles d’objets et la capacité C du sac a dos sont des entiers
positifs, et comme la capacité est toujours réduite de la taille d’un objet (pour lui réserver de
la place), les seules capacités résiduelles qui peuvent apparaitre sont les entiers compris
entre O et C.

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

111.2. Schéma de récursion

Le schéma de récursion sur un exemple avec 3 objets est donné sur la figure ci-dessous :

- La notation [1,2,3][6] signifie qu’on cherche la solution optimale au probléme
constitué des trois premiers objets [1,2,3], la capacité restante étant de [6].

- La notation A[3][6]=7 signifie que la valeur optimale du sous-probléeme contenant les
[3] premiers objets avec une capacité de [6] vaut 7.

- Dans les cas n°1 (branches de gauche), a partir des cas de base du bas (en vert) on
remonte la valeur A[i-1][c] ;

- Dans les cas n°2 (branches de droite), on remonte la valeur A[i-1][c-si] + vi.

- Lesvaleurs optimales A[-][] prennent le maximum entre les deux valeurs remontées.

https://www.informatique-f1.fr/dp/sacados/

Capacité: 6
Objet [Valeur]Taille _
1 3 1
2 2 3 0 1 2 3 4 5 6
2 I 2 , 000000 0
o1 . Al3][6]=7 _ . 5
ga;g Y2 e T Cesn ! EENNEENE
— — z
A[2](6]=3 A[2][4]=3 3 ¢
[1,2][6] [1,2][4]
ALLI[61-3 ALL31=0 ATLI41=3 ATLI[1]=0
[1](6] [11(3] [1][4] [11[1]
A[0][6]=0 " A[0][2]+3 0. ™_ o0 0 " A0][0]+3 0_"_0
e / \"\:3 d g \\\. S e \\\:3 / \\\
A[0][6]=0 A[0][2]=0 A[0][3]=0 A[0][-4=0 A[0][4]=0 A[0][0]=0 A[O][1]=0 A[0][21=0
[@][6] [D][2] [D113] [-1] [D][4] [D][0] [D][1] [-3]
(situation Impossible) (situation Impossible)

Figure 1 : Schéma de récursion du probléme du sac a dos

l11.3. Complexité sans mémoisation

Chaque niveau de récursivité ne peut enlever qu’un seul objet. Il faut donc descendre
jusgu’au niveau n pour avoir des cas de base. Tous les nceuds jusqu’au niveau (n — 1) sont
donc des nceuds internes qui se ramifient encore, avec un facteur de branchement égal a 2
(si on ne tient pas compte des cas ou s; > c). Le nombre exact de nceuds dépend de l'instance
du probléme. Dans le cas le plus défavorable, il peut aller jusqu’a 2" au niveau n. Le nombre
total de nceuds est alorsde 1 +2 +4 + ... +2"=2M1 -1,

A chaque noeud de I'arbre de récursion, le travail local (hors appels récursifs) se fait en
temps O(1) : on effectue seulement un nombre constant d’opérations (comparaisons,
additions, calcul d’'un maximum). Comme I'arbre de récursion est binaire et peut contenir
jusqu’a O(2") nceuds dans le pire des cas, le temps d’exécution de cet algorithme récursif
sans mémoisation est exponentiel, en O(2").

Remarguons gu’en pratique, |'algorithme top-down ne résout que les sous-problemes qui
sont réellement atteints en partant de I’état initial (n, C) et en suivant la récurrence. Certains
couples (i, c) ne sont jamais visités : par exemple parce que certaines capacités ne peuvent
pas apparaitre (combinaisons impossibles), ou parce que des branches sont coupées quand
un objet ne rentre pas (si > c).

https://www.informatique-f1.fr/dp/sacados/

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE
IV.1. Algorithme top-down

Etant donnés les sous-problémes et la relation de récurrence, on peut mettre en place un
algorithme top-down (avec mémoisation) de programmation dynamique pour le probleme
du sac a dos.

Algorithme top-down pour le calcul des valeurs optimales

Entrée : v[1, ..., n] : valeurs des objets
s[1, ..., n] : tailles des objets
C : capacité maximale du sac a dos

Sortie : valeur totale maximale d’un sous-ensemble S € {1, 2, ..., n} tel que Y};css; < C.

Valeurs maximales des sous-ensembles stockées dans un dictionnaire
A:={}

rec_opt_val_SAC (i, c) :
#i: nombre d’objets considérés (les i premiers)
c : capacité restante

Utilise la mémoisation
Si (i, c) estdans A :
| Retourner A[(i, c)]

Cas de base quandi=0ouc=0:A[(0,c)]=0; A[(i,0)]=0
Sii==Oouc==0:

Al(i,c)]:=0

Retourner A[(i, c)]

Récursion cas n°1 : on ne prend pas l'objet i
S1 :=rec_opt_val SAC(i-1,c) # Casn®l : Vic=Viic

Si s[i] > c alors retourne la solution S1
Sis[i]>c:

Al(i, ¢)] :=S1

Retourner A|(i, c)]

Cas n°2 : on prend l'objet i
S2 :=rec_opt_val_SAC(i-1,c-s[i]) +V[i] #Casn®2:Vic=Viicsi+ Vi

Sauvegarde et retourne la solution optimale
A[(i, c)] := max(S1, S2)
Retourner A[(i, c)]

Appel initial :
résultat := rec_opt_val_SAC (n, C)

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

IV.2. Complexité de I'algorithme top-down

Chaque sous-probléme est défini par deux parameétres : le nombre d’objets considérés (0 a
n) et la capacité restante (0 a C). Les états possibles sont donc les couples (i, c) avec 0 <i<n
et 0 < ¢ < C. Le nombre maximal de sous-problemes distincts est donc de (n+1)-(C+1) =
O(n-C).

Avec la mémaoisation, chaque couple (i, c) est calculé au plus une fois et les appels suivants
sur les mémes couples font uniguement un acces dans le dictionnaire des valeurs en O(1).

Lors de la résolution d’un sous-probléme (i, c) non mémorisé, I'algorithme effectue un travail
local en O(1) (comparaisons, calcul d’un maximum, addition), ainsi qu’au plus deux appels
récursifs vers des sous-problémes comme (i-1, c) et (i-1, c-sj).

Comme chaque sous-probléme est résolu au plus une fois, le nombre total d’appels « réels »
est en O(n-C), et la complexité en temps est donc O(n-C).

L'espace mémoire utilisé par le dictionnaire de mémoisation est en O(n-C) et la profondeur
de la pile d’appels récursifs est au maximum de n, soit O(n). Le total de I'espace mémoire est
donc dominé par le dictionnaire et est de O(n-C).

IV.3. Algorithme bottom-up

L'algorithme bottom-up consiste a remplir progressivement la table des solutions des sous-
problemes en utilisant la relation de récurrence, en partant des cas de base.

Algorithme bottom-up pour le calcul des valeurs optimales

Entrée : v[1, ..., n] : valeurs des objets ; s[1, ..., n] : tailles des objets ; C : capacité
Sortie : valeur totale maximale d’un sous-ensemble S € {1, 2, ..., n} tel que };csS; < C.

A:={} # Valeurs maximales des sous-ensembles stockées dans un dictionnaire

opt_val_SAC (v, s, C) :
Cas de base
PourcallantdeOacC:
| A[(0,c)] :=0

Résout I'ensemble des sous-problémes
Pouriallantdelan:

PourcallantdeOaC:

Utilise I’équation de récurrence

Sis[i]>c:

| AL, 01 = Al(i-1, ©)]

Sinon :

| A[(i, c)] := max {A[(i-1, c)], A[(i-1, c-s[i])] + V[i]}

Retourne la solution optimale sur le probléeme général
Retourner A[(n, C)]

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

Les tables construites par les algorithmes top-down et bottom-up sont données ci-dessous :

Capacité : 6
Objet | Valeur|Taille
1 3 4
2 2 3
3 4 2
Top-down Bottom-up

Nbr d’ objets

(=Y

o

o

w

w
Nbr d’ objets

(=Y

o

o

o

o

w

w

w

3 7 3 0 0 4 4 4 6 7

Figure 2 : Tables des valeurs optimales top-down (gauche) et bottom-up (droite)

IV.4. Complexité de I'algorithme bottom-up

A linverse de I'algorithme top-down, I'algorithme bottom-up parcourt systématiquement
toute la table A[i, c] pouri=0..n et c =0..C, méme pour des états qui ne seront jamais

« utiles » pour la solution finale. Il effectue donc toujours exactement (n + 1)-(C + 1) calculs,
indépendamment de la structure de 'instance.

On a donc la méme complexité asymptotique O(n-C) pour les deux approches, mais en
pratique le top-down peut faire moins de travail effectif sur certaines instances, alors que le
bottom-up remplit la table de maniere uniforme, quitte a calculer des sous-problémes
inutiles.

V) ALGORITHME DE RECONSTRUCTION

V.1. Principe et algorithme de reconstruction

On peut reconstruire une solution optimale en retragant le chemin dans le tableau A une fois
rempli.

En partant du plus grand sous-probléme, dans le coin inférieur droit, I'algorithme de
reconstruction vérifie quel cas de la récurrence a été utilisé pour calculer A[n][C] :
- SiA[n][C] == A[n-1][C], alors c’est le cas n°1 : on ne prend pas I'objet n et on reprend
la reconstruction a partir de I'entrée A[n-1][C] ;
- Sinon, c’est le cas n°2 : on prend I'objet n et on reprend la reconstruction a partir de
I'entrée A[n-1][C-sn]

COURS : PROGRAMMATION DYNAMIQUE — LE PROBLEME DU SAC A DOS

L'algorithme de reconstruction est le suivant :

Algorithme de reconstruction

Entrée : v[1, ..., n] : valeurs des objets

s[1, ..., n] : tailles des objets

C : capacité maximale du sac a dos

A : dictionnaire des valeurs optimales sous la forme A[(i, c)]
Sortie : Solution optimale du probleme (numéros des objets)

Reconstruction (v, s, C, A) :
S:=¢ # Objets de la solution optimale
c:=C # Capacité restante

Pouriallantdenal:
Si A[(i, c)] # A[(i-1, c)]:
S:=Su i} # Cas n°2, on inclut I'objet i
c:= c—sJi] # Réserve I'espace pour cet objet
Retourner S

La figure ci-dessous illustre ce principe de reconstruction :

OnpartdeS=J;c=C(c=6)

. 5=}
apacité : 6
Objet Va\‘eur Taille l
2 | 2 | a AI6] # AL21l6]
3 4 3//—’—’ = Onprend3etonenléves,;=2ac(c=4)
casnl: 3§ ABlI61=7 \,,.,_,_7_34.4:7 Cas n°2: s={3}
ses o 23l e l
— eI AL2][4] = Al1][4]
A[2](6]=3 ; A[2][4]=3~ = 0On ne prend pas 2
[1,2][6] s (12004 s={3}
3T 4222 3 TR 0e2=2 l
Al][6]1=3 AlL][3]=0 RCATTE A0 > Af1][4] = Af0]f4]
[1][e€] [1][3] S| [1][1] = Onprend 1 eton enlévesl ac(c=0)
Al0][6]=0, " Al0][2]+3 0. ™o 0 7IAl0][0]+3 0" 0 s={3,1}
Al0][6]=0 A[0][2]=0 A[0][3]=0 A[O][-M=0 A0][4)=0 A[0][0]=0 A[0][1]=0 A[0][;3f=0
[@](6] [@112] [2]13] #1-1] [Z[4] [Z[0] [@][1] [-3]
(situation Impossible) (situation Impossible)

Figure 3 : Principe de reconstruction de la solution optimale
V.2. Complexité finale

L’étape de reconstruction s’exécute en temps O(n) (avec un travail en O(1) par itération de la
boucle principale), ce qui est beaucoup plus rapide que le temps O(n-C) nécessaire pour
remplir le tableau des valeurs optimales.

Le probléme du sac a dos peut donc étre résolu par programmation dynamique en temps
O(n-C).

