COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Vous avez vu en premiére année deux maniéres de programmer des algorithmes : la
méthode « diviser pour régner » et celle des algorithmes gloutons. La premiére méthode
consiste a diviser un probleme en sous-problémes indépendants qu’on résout puis qu’on
combine, tandis que les algorithmes gloutons construisent une solution étape par étape en
faisant a chaque fois un choix localement optimal sans revenir en arriere. Ces méthodes ne
couvrent pas tous les problémes de calcul que I'on peut rencontrer.

Nous allons introduire dans ce cours une troisieme méthode : la programmation dynamique.
C’est une technique particulierement puissante, car elle conduit souvent a des solutions
efficaces.

Ici, nous allons étudier un algorithme faisant partie des « grands classiques » afin
d’apprendre le fonctionnement de cette méthode.

1) PROBLEME DE L’ENSEMBLE INDEPENDANT PONDERE.........cccoveruerreeerneereersesssesssesssesseens 2
[.1. DEfinition du ProblEMEcc..eeiiee e e 2
[.2. Que donnerait un algorithme glouton SUr €& Cas ?......ccccuveeiviiiiie e 3
[.3. ApProche « diViSEr POUT FEENEI M ...cciieiuvieeeeiiieeeeeiieeeeesttee e e estree e e e esreeeeessaeeeeesnsaeeeeeanens 3

1) ALGORITHME LINEAIRE POUR LE PROBLEMEc.ocerueveeueeneenenseeseesesssessessesssessessessesnes 4
[1.1. SOUS-StruCture Optimale.........uiiiiieeee e e e e e e e e e e e enees 4
11.2. Equation de récurrence sur les valeurs 0ptimalesocoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenns 5
[1.3. APPIrOCHE FECUISIVE NAIVE......uuiiiiieiieiieicirieeeee e e eecrrrree e e e e eeseetarreeeeeeeesessstrraeeeeeeeesnnnnes 6
I1.4. Récursion avec un cache mémoire (MEmMOoiSation)ceceeeiieiiireeeeeeeeiiiicirreeeee e e e e 7

111) CALCUL DES VALEURS OPTIMALES : IMPLEMENTATION TOP-DOWNcceeuerueevennnenne 8
[.1. Intérét de |a MEmOISAtiONcoiiiiiiiiiiiee e 9
l11.2. Quelques remarques sur les algorithmes top-dowWnccccciiiiieiiii e, 12

IV) CALCUL DES VALEURS OPTIMALES : IMPLEMENTATION BOTTOM-UPccceevreuernnen. 13

V) ALGORITHME DE RECONSTRUCTIONcccevuuueiiiiiiinmnennnnnssssssinnessnsssssssssssssssssnsssssssssnnns 14

V1) LES PRINCIPES DE LA PROGRAMMATION DYNAMIQUE........ccccteemmeeeecciieninneennnnnncesnnnns 16
VI.1. Propriétés souhaitables des sous-problEMES..........cccovvviciiiieeiii e, 17
VI.2. Programmation dynamique vs diViSer poUr rEZNEr.......ccccvvvveeeeeeeeiiciirreeeeeeeeeeesinnenenes 17

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

1) PROBLEME DE L’ENSEMBLE INDEPENDANT PONDERE

Nous allons concevoir depuis zéro un algorithme pour un probléme de calcul concret et
délicat, ce qui nous forcera a développer un certain nombre de nouvelles idées. Une fois que
nous aurons résolu le probléme, nous identifierons les ingrédients de notre solution qui
illustrent les principes généraux de la programmation dynamique.

I.1. Définition du probleme

Pour décrire le probléme, soit G = (V, E) un graphe non orienté. Un ensemble indépendant
de G est un sous-ensemble S € V de sommets mutuellement non adjacents : pour tous v, w
dans S, on a (v, w) ¢ E. Autrement dit, un ensemble indépendant ne contient pas les deux
extrémités d’'une méme aréte de G.

Par exemple, si les sommets représentent des personnes et les arétes des paires de
personnes qui ne s'aiment pas, les ensembles indépendants correspondent aux groupes de
personnes qui s’entendent tous bien. Ou encore, si les sommets représentent des cours que
vous envisagez de suivre et qu’il y a une aréte entre chaque paire de cours en conflit, les
ensembles indépendants correspondent aux emplois du temps réalisables (en supposant
gue vous ne puissiez pas étre a deux endroits a la fois).

Par exemple, le graphe de gauche ci-dessous posséde six ensembles indépendants :
I’ensemble vide et les cing singletons. Celui de droite possede les mémes ensembles, plus
cing autres ensembles indépendants de dimension 2 : {A, C}, {B, D}, {C, E}, {D, A} et {E, B}.

° A
E »@ (E e
D D (&
Figure 1 : Exemples de graphe

Le probléme de I'ensemble indépendant pondéré (Weighted Independent Set — WIS)
s’énonce ainsi :

Probléme : Ensemble indépendant pondéré (WIS)

Entrée : Un graphe non orienté G = (V, E) et un poids non négatif wy pour chaque
sommetv EV.

Sortie : Un ensemble indépendant S € V de G ayant la somme de poids des sommets
Y.ves Wy, aussi grande que possible.

Une solution optimale au probléme de I'ensemble indépendant pondéré (WIS) est appelée
ensemble indépendant de poids maximal (Maximum WIS — MWIS). Par exemple, si les
sommets représentent des cours, les poids des sommets représentent le nombre d’unités, et
les arétes représentent les conflits entre les cours, alors le MWIS correspond a I’'emploi du
temps réalisable avec la charge la plus lourde (en unités).

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Le probléme de I'ensemble indépendant pondéré est difficile méme dans le cas simple des
chemins. Par exemple, une instance du probléme pourrait ressembler a ceci (avec les
sommets étiquetés par leurs poids) :

O—"C—0—0
Tt 4 5 4

Figure 2 : Probléme WIS sous forme d'un chemin

Ce graphe posséde 8 ensembles indépendants : {J}, {A}, {B}, {C}, {D}, {A, C}, {A, D} et {B, D}.
Le dernier de ces ensembles possede le plus grand poids total, égal a 8. Le nombre
d’ensembles indépendants d’un graphe chemin croit exponentiellement avec le nombre de
sommets, donc il n’y a aucun espoir de résoudre le probléme par recherche exhaustive, sauf
pour les toutes petites instances.

I.2. Que donnerait un algorithme glouton sur ce cas ?

Pour de nombreux problemes de calcul, les algorithmes gloutons sont un excellent point de
départ. De tels algorithmes sont généralement faciles a imaginer, et méme lorsqu’ils ne
parviennent pas a résoudre le probléme (ce qui arrive souvent), la maniére dont ils échouent
peut aider a mieux comprendre les subtilités du probléme.

Pour le probléme WIS, I'algorithme glouton le plus naturel est sans doute celui-ci : on
parcourt une seule fois les sommets, du meilleur (poids le plus élevé) au pire (poids le plus
faible), en ajoutant un sommet a la solution courante tant qu’il n’entre pas en conflit avec un
sommet déja choisi.

Dans I'exemple de la figure 2, la premiére itération de I'algorithme glouton choisirait donc le
sommet de poids maximum 5, c’est-a-dire « C ». Puisque les sommets avec les poids juste
au-dessous de 5 (« D » et « B ») ne sont pas indépendants de « C », I'algorithme choisirait
ensuite d’ajouter « A » a « C » et renverrait donc I'ensemble {C, A} dont le poids total est 6,
et qui n’est pas la solution optimale.

I.3. Approche « diviser pour régner »

La conception d’algorithmes « diviser pour régner » vaut toujours la peine d’étre essayée
pour les problémes ou il existe un moyen naturel de découper I'entrée en sous-problémes
plus petits.

Pour le probléme WIS avec un graphe chemin G = (V, E) comme entrée, I'approche naturelle
pourrait étre :

Probléme de '’ensemble indépendant pondéré : approche « Diviser pour mieux régner »

G1 := Premiére moitié de G

Gz := Seconde moitié de G

S1:= Résoudre de maniére récursive le probleme sur G1
S, := Résoudre de maniére récursive le probleme sur G2
Combiner S1, S; en une solution S pour G

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Le probléme va se poser dans I'étape de combinaison. Le premier et le deuxieéme appel
récursif remontent les solutions optimales « B » et « C », mais leur combinaison ne forme
pas un ensemble indépendant :

O——(0—0
1 4 5 4
H——~CE O0—0C
1 4 5 4

T
G

| I
Sy . 5, @

a

Figure 3 : Méthode "Diviser pour mieux régner" sur le probleme WIS

On peut désamorcer un conflit a la frontiere lorsque le graphe d’entrée n’a que quatre
sommets mais quand il en a des centaines ou des milliers, cela devient tres compliqué.

I1) ALGORITHME LINEAIRE POUR LE PROBLEME

Il.1. Sous-structure optimale

Idéalement, une solution optimale doit étre construite d’'une maniére déterminée a partir de
solutions optimales de sous-problémes plus petits, réduisant ainsi le champ des candidats a
un nombre gérable.

Plus concretement, prenons G = (V, E) le graphe de type chemin a n sommets, avec les arétes
(v1, v2), (v2, v3), ..., (Vn-2, Vn-1), (Vn-1, Vn) €t un poids non négatif wi pour chaque sommet v; E V.
Supposons que n 2 2 ; sinon, la réponse est évidente :

Wy W W3 Wn2 Wn.1 Wy

Figure 4 : Graphe G = (V, E) de type chemin a n sommets

Supposons connu un ensemble indépendant pondéré S C V, qui est une solution optimale du
probléme et dont le poids total est W. Deux cas sont possibles : S ne contient pas le dernier
sommet vy, soit il le contient. Examinons ces deux cas.

Cas n°1:v, ¢ S. Supposons que la solution optimale S n’inclue pas le dernier sommet vn.

On obtient le graphe de type chemin a (n — 1) sommets Gn-1 a partir de G en retirant le
dernier sommet v, et la derniére aréte (vn-1, Vn). Comme S n’inclut pas le dernier sommet de
G, il ne contient que des sommets de Gn-1 et S peut donc étre considéré comme un
ensemble indépendant de Gn-1 (toujours de poids total W) :

v, &S

| J
T

n1

Ainsi, une fois que I'on sait qu’une solution optimale exclut le dernier sommet, on sait
exactement a quoi elle ressemble : c’est la solution optimale du graphe plus petit Gn-1.

G

Si S (de poids total W) est solution optimalede Get v, ¢ S
= S (de poids total W) est solution optimale de Gn-1

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Cas n°2 : v, € S. Supposons que la solution optimale S inclue le dernier sommet vn.

Comme S est un ensemble indépendant, S ne peut pas contenir deux sommets consécutifs
du chemin, donc il exclut I'avant-dernier sommet : vo-1 ¢ S. On obtient le graphe de type
chemin a (n —2) sommets Gn-; a partir de G en retirant les deux derniers sommets et arétes
(sin=2, oninterpréte Go comme le graphe vide avec un poids total de 0).

Vo £S5 v, €S
l |
v) IR))
() 2/ %/ o NS NG ()
Wy W, Wy W, Wi g w,

Gz

Comme S contient v, et que Gn-2 ne le contient pas, on ne peut pas considérer S comme un
ensemble indépendant de Gn-2 et donc comme une solution optimale de Gn-2. Mais apres
avoir retiré le dernier sommet de S, on peut le faire : S - {vn} ne contient ni vo-1 ni vs et peut
donc étre considéré comme un ensemble indépendant du graphe plus petit Gn-2 (avec un
poids total W - wy).

Ainsi, une fois que I'on sait qu’une solution optimale inclut le dernier sommet, on sait
exactement a quoi elle ressemble : c’est la solution optimale du graphe plus petit Gn-2,
complété par le dernier sommet vp.

Si S (de poids total W) est solution optimale de Get va € S
= S - {vn} (de poids total W — wy) est solution optimale de Gn-2
= S (de poids total W) est solution optimale de Gn-2 U {vn}

I1.2. Equation de récurrence sur les valeurs optimales

On aisolé les deux seules possibilités pour une solution, donc celle des deux dont le poids
total est le plus grand est la solution optimale. Nous avons donc une récurrence pour le
poids total d’'une solution optimale a notre probleme :

Récurrence sur le poids de la solution optimale

Soit Wi le poids total d’une solution optimale d’'un ensemble indépendant pondéré de G;
(quand i =0, on interpréte Wo comme 0). Alors, pour touti=2,3,..,n:

W, = maxjwi—l Wi, + W/l
%,__/

cas1 cas 2

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

11.3. Approche récursive naive

Nous avons réduit le champ des possibles a seulement deux candidats pour la solution
optimale. Dans le pseudocode suivant, on va essayer les deux options et retourner la
meilleure. Les graphes Gn-1 et Gn-2 sont définis comme précédemment :

Algorithme récursif pour le probleme du meilleur ensemble indépendant pondéré

Entrée : Un graphe de type chemin G avec I'ensemble de sommets {v1, vy, ..., va} et un
poids non négatif wi pour chaque sommet vi.

Sortie : Un ensemble indépendant de poids maximal de G.

Sin=0alors: # cas de base
| Retourner {J}
Sin=1alors: # cas de base
| Retourner {v1}

Récursion lorsque n >2

S1 := calculer récursivement la solution optimale de Gn-1
S, := calculer récursivement la solution optimale de Gn-2

Retourner S1 ou S; U {vn}, selon lequel a le poids le plus élevé

Le schéma de récursion ressemble a la figure 5 (on cherche S= MWIS de [A, B, C, D]) :

() ()
————0)
1 4 5 4
a / [AJ BI Cr D] A
Casn°1 __Cas ne2:
Des / \DeS
/ \
[A,B,C] [A,B]
C §E/ /\ /\B eS
[A,B] [®]

A
B & S’// \“\B (S S
/ “\
[A] (<]
Figure 5 : Exemple d'arbre de récursion pour la recherche d'un MWIS (en vert : les cas de base)

Le schéma de récursion ressemble a celui des algorithmes de type diviser pour régner en
temps O(n log n) comme « MergeSort », avec deux appels récursifs suivis d’'une étape de
combinaison simple. Mais il y a une grande différence : I'algorithme « MergeSort » écarte la
moitié de I’entrée avant de lancer la récursion, alors que notre algorithme récursif n’élimine
gu’un ou deux sommets (sur des milliers voire des millions).

Les deux algorithmes ont des arbres de récursion avec un facteur de branchement égal a 2.
Le premier possede environ logzn niveaux, la récursion s’arréte quand il arrive a des sous-
tableaux de taille 1 (cas de base). Chaque appel tout en bas de I'arbre de récursion
correspond donc a trier un sous-tableau qui ne contient qu’un seul élément. Il y a donc
environ n appels au niveau du bas de I'arbre, donc un temps en O(n log n).

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Dans le deuxieme, chaque niveau de récursivité ne peut enlever qu’au plus 2 sommets. Si on
descend de k niveaux dans I'arbre de récursion, on aura enlevé au plus 2-k sommets. Donc
pour partir de n sommets et arriver a 0 ou 1 sommet et donc aux cas de base, il faut au
moins descendre jusqu’au niveau n/2. Tous les nceuds jusqu’au niveau (n/2 — 1) sont donc
des nceuds internes qui se ramifient encore. Le nombre de nceuds peut donc aller jusqu’a
2"2 au niveau n/2. Pour cet algorithme récursif, le temps d’exécution est exponentiel : il faut
au moins un nombre d’appels récursifs proportionnel & 2"2. Autrement dit, le temps explose
comme 2"2 = (\2)" = 1,414" quand n grandit.

Plus exactement, la récurrence du nombre d’appels T(n) est de la forme :
Tm)=Tn—-1)+Tn-2)+0(@)
... qui est exactement la récurrence de Fibonacci. La solution est T(n) = O(p"), avec ¢ =

“f ~ 1,618,

11.4. Récursion avec un cache mémoire (mémoisation)

L'algorithme précédent n’est donc pas meilleur qu’une recherche exhaustive, mais on peut
se demander, parmi I'ensemble des appels récursifs, combien de graphes d’entrée distincts
sont réellement examinés.

Soit un, soit deux sommets et arétes sont retirés a la fin du graphe. Ainsi, un invariant tout
au long de la récursion est que chaque appel récursif G,

recoit en entrée un certain préfixe Gi comme graphe .FH Gs ‘

d’entrée, ou G; désigne les i premiers sommets et les @ (v2) (%) @
(i— 1) premiéres arétes du graphe d’entrée original c:‘

(et Go désigne le graphe vide). G,)

Il n’existe que (n + 1) graphes de ce type (Go, G1, G, ..., Gn), oU n est le nombre de sommets
du graphe d’entrée. Par conséquent, seulement (n + 1) sous-problémes distincts sont
réellement résolus parmi I’exponentiel nombre de différents appels récursifs.

Cela montre que le temps d’exécution exponentiel de I'algorithme récursif provient
uniguement de la redondance des sous-problémes a traiter. La premiére fois que I'on résout
un sous-probleme, I'idée est donc d’enregistrer le résultat dans un cache une bonne fois
pour toutes. Ainsi, si 'on rencontre le méme sous-probléme plus tard, on peut simplement
retrouver sa solution dans le cache en temps constant.

Les résultats des calculs précédents sont donc stockés dans un tableau global de longueur (n
+ 1), ou A[i] contient une solution optimale de Gj, Gj désignant les i premiers sommets et les
(i— 1) premiéres arétes du graphe d’entrée original (et Go est le graphe vide). L’algorithme
vérifie d’abord si le tableau A contient déja la solution pertinente S1 ; sinon, il calcule S1
récursivement comme avant et met le résultat en cache dans A. De méme pour S,.

Chacun des (n + 1) sous-problemes n’est désormais résolu a partir de zéro qu’une seule fois.
Correctement implémenté, le temps d’exécution passe d’exponentiel a linéaire. Cette forme
particuliére d’utilisation d’un cache dans un algorithme s’appelle la mémoisation.

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

I11) CALCUL DES VALEURS OPTIMALES : IMPLEMENTATION TOP-DOWN

Pour I'instant, nous nous concentrons sur le calcul des poids optimaux des sous-probléemes
afin de remonter au poids optimum de la solution finale.

Nous verrons plus tard comment identifier également les sommets de I'’ensemble
indépendant pondéré optimum a partir des valeurs des poids mémorisées (ce qu’on appelle

la reconstruction de la solution optimale).

L'implémentation récursive de I'algorithme avec mémoisation est appelée top-down.

Algorithme top-down pour le calcul des poids optimaux

Entrée : Un graphe de type chemin G avec I'ensemble de sommets {v1, vy, ..., va} et un
poids non négatif wi pour chaque sommet vi.

Sortie : Le poids total du meilleur ensemble indépendant pondéré

A:={0:0,1: wi} # poids des sous-problemes

rec_poids_MWIS(Gn) :

Sin==0:0pt
| Retourner A[0]
Sin==1:

| Retourner A[1]

Si A[n] déja en cache :
| Retourner A[n]
Sinon :
S1 :=rec_poids_ MWIS(Gn-1)
S2 :=rec_poids_ MWIS(Gn-2) + wn,
A[n] := max {S1, S2}
Retourner A[n]

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Le schéma de récursion avec le calcul des poids optimaux est représenté sur la figure 6 :

- Ondescend tout d’abord I’arbre jusqu’a un cas de base.

- Arrivé au cas de base (n =0 ou n = 1), on attribue la valeur du poids de base : A[0] =
ou A[l] =w1

- Sile dernier sommet du graphe de I'étape précédente n’a pas été gardé (cas n°1),
alors on remonte la valeur sélectionnée (0 ou wi).

- Sile dernier sommet du graphe de I'étape précédente a été gardé, alors on remonte
la valeur sélectionnée (0 ou w1) + le poids du sommet qui a été gardé.

- On compare les deux poids remontés et on garde celui qui a la valeur maximale
(poids optimum) puis on I'enregistre dans la table des valeurs.

- On applique la méme méthode tout le long de la remontée de I'arbre.

https://www.informatique-f1.fr/dp/MWIS/
On cherche S = MWIS de [A,B,C,D]

indices : (1) () (3) (4)
Al4)=
0 1 2 Deg§s [ABCD] DesS
0 1 il A[3]=6 Al2]+ w;=8
_______ Situation
A[3]=6 Al2]=4 T~ .en double
[A,B,C] [A,B]
CesS f BeS BeS
Al2]= 4 All]+w.=6 r Al1]=1 A[0]+wg=4
A[2]= A[1]=1 \ A[1]=1 A[0]=0 ,
(A, B] w._ [A] //\\ [A] (<] ,/
/—+ A[1] AA[OHWB ‘\
|:a valz?ur remontée ?St A[1]=1 A[0]=0 Lavaleur remontée est égale 3
égale a A’[l] caronn’a [A] (%] A[O] + wy car il faut tenir compte
pas gardé B qu'onagardéB

Figure 6 : Arbre de récursion avec calcul des poids optimaux
lll.1. Intérét de la mémaoisation

On remarque que le cas A[2] se présente deux fois, ce qui montre I'importance de la
mémoisation. Dans cet exemple simple, il n’y a qu’un seul cas qui se reproduit, mais on
imagine facilement que ce nombre sera beaucoup plus grand dans des situations plus
complexes.

La table de mémoisation nous donne les valeurs optimales des différents sous-problémes :
- Valeur du MWIS {J} = A[0] =
- Valeur du MWIS {A}=A[1] =
- Valeur du MWIS {A, B} = A[2] =
- Valeurdu MWIS {A, B, C} = A[3] =
- Valeurdu MWIS {A, B, C, D} = A[4] =

https://www.informatique-f1.fr/dp/MWIS/

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Voici une implémentation Python qui retourne les poids optimaux dans un dictionnaire ‘A’
de I'ensemble des sous-probléemes du graphe :

graphe a traiter
gr‘aphe = {llAll:l, IIBII:4-’ IICII:S, IIDII:4}

def rec_poids MWIS(G):
Fonction récursive
def f rec(Gi, i):
Cas de base
if i < 2:
return A[i]

Récursion sur les autres cas
if i in A.keys():

return A[i]
else:

Récupére wi

wi = list(Gi.values())[i-1]

Construction de Gi-1
Gi = {cle: G[cle] for cle in list(G.keys())[©0:i-1]}
S1 = f_rec(Gi,i-1)

Construction de Gi-2
Gi.popitem()
S2 = f_rec(Gi,i-2) + wi

A[i] = max(S1,S2)
return A[i]

Poids optimaux des cas de base
A = {0:0, 1l:graphe["A"]}

Appel de la fonction récursive
f rec(G,len(G))
return A

A = rec_poids_MWIS(graphe)

On obtient: A={0:0,1:1, 2:4, 3: 6, 4: 8}

Afin de montrer |'effet de la mémoisation, nous allons maintenant appliquer notre
algorithme sur un exemple un peu plus complexe, et récupérer le nombre total de
récurrences rencontrées et le nombre total de cas qui ont été traités (hors cas de base).
Le graphe traité est le suivant :

O—"C—O—CO—CE—0

3 2 1 6 4 5

10

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Voici le programme Python utilisé :

Fonction récursive
def f rec(Gi, i):

global nbr_cas

nbr_cas = nbr_cas + 1
Cas de base
if i < 2:

return A[i]

if i in A.keys():
return A[i]
else:

nbr_cas_hors_base

Récupere wi

S1 = f_rec(Gi,i-1)

Gi.popitem()

A[i] = max(S1,S2)
return A[i]

A = {0:0, 1:graphe["A"]}
Nombre de calculs
global nbr_cas

global nbr_cas_hors_base

nbr_cas = 0
nbr_cas_hors_base = 0

f rec(G,len(G))

graphe a traiter

A, nbr_cas, nbr_cas_hors base

global nbr_cas_hors_base

def rec_poids_MWIS avec_comptage(G):

Comptage du nombre de récurences

Récursion sur les autres cas

Incrémente le nombre de calculs hors cas de base

nbr_cas_hors_base + 1

wi = list(Gi.values())[i-1]
Construction de Gi-1

Gi = {cle: G[cle] for cle in list(G.keys())[0:i-1]}

Construction de Gi-2

S2 = f rec(Gi,i-2) + wi

Poids optimaux des cas de base

Appel de la fonction récursive

return A, nbr_cas, nbr_cas_hors_base

gl"aphe = {IIAII:B, ||Bl|:2’ llcll:l, "D":6, "E":4, IIFII:5}

rec_poids MWIS avec_comptage(graphe)

11

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Les valeurs optimales des sous-probléemes obtenues sont les suivantes :
A={0:0,1:3,2:3,3:4,4:9,5:9, 6: 14}

De plus, les résultats montrent que le nombre de récurrences est de 11 et le nombre de cas
traités (hors cas de base) est de 5.

Le nombre total de récurrences est donc bien supérieur a 252= 23 = 8 ce qui montre que
sans mémoisation 'algorithme aurait un temps d’exécution exponentiel.

Le nombre de calculs effectués étant en O(n), et chaque calcul prenant un temps en O(1), on
a bien un algorithme en O(n).

I1.2. Quelques remarques sur les algorithmes top-down

On observe ici que, pour le probleme de MWIS sur un graphe de type chemin, I’algorithme
top-down avec mémoisation explore en fait tous les sous-problémes possibles : il effectue (n
- 1) calculs « réels » parmi les (n + 1) sous-problemes distincts (de Go a Gn). Il résout donc
exactement (n + 1) sous-problémes, dont (n - 1) sont non triviaux, jamais moins.

Il existe cependant de nombreux problémes ou I'utilisation d’algorithmes top-down avec
mémoisation permet aussi de réduire drastiquement le nombre de cas réellement calculés
par rapport au nombre total de sous-problémes.

Voici quelques exemples dont certains sont référencés dans votre programme :

- Le probléme de partitionnement équilibré d’entiers positifs, qui consiste a découper
un ensemble d’entiers positifs en deux sous-ensembles dont les sommes sont aussi
proches que possible (idéalement égales) ;

- Le probléme du sac a dos, qui consiste a choisir, parmi des objets ayant chacun un
poids et une valeur, un sous-ensemble qui rentre dans un sac de capacité limitée tout
en maximisant la valeur totale.

- Le probléme de la distance d’édition de Levenshtein, qui consiste a mesurer a quel
point deux chaines de caracteres sont différentes, en comptant le nombre minimal
d’opérations (insertions, suppressions, substitutions) nécessaires pour transformer
I'une en l'autre.

- Le probleme d’alignement de séquences (type Needleman—Wunsch), qui consiste a
aligner deux séquences (par exemple d’ADN ou de caracteres) en insérant
éventuellement des « trous » afin de maximiser une mesure de similarité (ou
minimiser un co(t de différences).

- Les algorithmes de plus courts chemins comme Bellman—Ford et Floyd—Warshall qui
calculent les plus courts chemins entre des sommets d’un graphe (Bellman—Ford
depuis une source vers tous les sommets, méme avec des poids négatifs, et Floyd—
Warshall entre tous les couples de sommets).

En conclusion, nous n"avons pas encore exploré tous les avantages des algorithmes top-
down !

12

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

IV) CALCUL DES VALEURS OPTIMALES : IMPLEMENTATION BOTTOM-UP

Nous continuons de nous concentrer sur le calcul des poids optimaux des solutions aux sous-
problemes afin de remonter au poids optimum de la solution finale. Cette fois nous allons
explorer I'algorithme de type bottom-up.

L'idée est ici de résoudre systématiquement I’'ensemble des sous-problémes un par un, mais
en partant des cas de base. En effet, la solution d’un sous-probleme dépend des solutions de
deux sous-problémes plus petits. Pour s’assurer que ces deux solutions soient
immédiatement disponibles, on peut travailler de maniére ascendante (bottom-up), en
commencant par les cas de base et en construisant progressivement des sous-probléemes de
plus en plus grands de maniére itérative.

Algorithme bottom-up pour le calcul des poids optimaux

Entrée : Un graphe de type chemin G avec I'ensemble de sommets {v1, vy, ..., va} €t un
poids non négatif wi pour chaque sommet vi.

Sortie : Le poids total du meilleur ensemble indépendant pondéré
A:={0:0,1: wi} # poids des solutions sous-optimales
Pouriallantde2an:

Utilisation de I’équation de récurrence

Ali] :== max {A[i — 1], A[i — 2] + wi}

Retourner A

On pourrait également utiliser un tableau de valeurs de longueur (n + 1) et indexé de 0 an
pour enregistrer les poids optimaux. Au moment ou une itération de la boucle principale doit
calculer la solution du sous-probléeme A[i], les valeurs A[i-1] et A[i-2] des deux sous-
problémes plus petits pertinents ont déja été calculées lors des itérations précédentes (ou
dans les cas de base). Ainsi, chaque itération de la boucle prend un temps O(1), pour un
temps d’exécution ultra rapide en O(n).

Par exemple, pour le graphe ci-dessous :

2\ A N A
(A) (8) (© (D) (E)
3 2 1 6 4 5

-

... on obtient le tableau suivant :
0 1 2 3 4 5 6

0 3 3 4 9 9 | 14

A la fin de I'algorithme, chaque case du tableau A[i] contient le poids total d’'un MWIS du
graphe Gj, qui est composé des i premiers sommets et des (i — 1) premiéres arétes du graphe
d’entrée. Dans I'exemple ci-dessus, le poids total d’'un MWIS du graphe d’entrée original est
la valeur de la derniére case du tableau (14), correspondant a I'ensemble indépendant
constitué des premier, quatrieme et sixieme sommet.

13

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Voici un exemple d’implémentation en Python :
def poids_MWIS bottom _up(G):
Poids optimaux des cas de base
A = {0:0, 1:G["A"]1}

for i in range(2, len(G)+1):
A[i] = max(A[i-1],A[i-2] + list(G.values())[i-1])

return A
graphe a traiter

graphe = {"A":3, "B":2, "C":1, "D":6, "E":4, "F":5}
A = poids_MWIS bottom_up(graphe)

V) ALGORITHME DE RECONSTRUCTION

Les algorithmes que nous avons vus ne calculent que les poids des sous-probléemes
optimaux, et non pas le meilleur ensemble indépendant pondéré lui-méme.

L’approche pour obtenir le meilleur ensemble indépendant pondéré consiste a utiliser une
étape de post-traitement pour le reconstruire a partir des valeurs optimales obtenues par
les algorithmes précédents.

Nous avons vu précédemment (voir Il.1., aux pages 4 et 5) que deux cas sont possibles pour
savoir si un sommet v, du graphe d’entrée G appartient a I'ensemble indépendant final
optimal
- SiA[n-1] > A[n - 2] + wy, cela signifie que la solution optimale de Gn-1 est également
la solution de notre ensemble final optimum. Dans ce cas, on ne garde pas Vvn.
- Sinon, cela signifie que la solution optimale de Gn-2 U {vn} est également une solution
optimale de notre ensemble final optimum. Dans ce cas, on garde v.

On cherche S = MWIS de [A,B,C,D]

indices : (1) (2) (3 (4) OnpartdeS=J

O—O—O0—0 5=
1 4 5 4 l

A[3] < A[2] + wp

= /’/—_’_—' = Onprend D

" alat=8 .
Degs " [ABCD] N Des S ={D}
ABl=6 " so__.-7 A[2]+ wp=8 l

o AT S A[1] < A[O] + wg
A[3]=6 +7 A[2]=4 ©
[A,B,C] '\\ [AB] ./ = On prend B
& e S= {DI B}
CegS/ CeS BgS / BeS
Al2]=4 A[1]+w =6 All)=1 / A[0]+w =4
Al2]=4 A[1]=1 A[1]=1 A[0]=0
(D]

[A,B] [A] [A]

BegS/ \BeS
Al1]=1, A[0]+wg=4

A[1]=1 A[0]=0
[A] (%)

Figure 7 : Principe de reconstruction du graphe pondéré indépendant optimum

14

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

L'algorithme de reconstruction est le suivant :

Algorithme de reconstruction de I’ensemble pondéré indépendant optimum

Entrée : le tableau A calculé par I'algorithme top-down ou bottom-up pour un graphe
chemin G avec ensemble de sommets {v1, v2, ..., vn} et un poids non négatif wi pour
chaque sommet vi.

Sortie : un ensemble indépendant de poids maximal de G.

S:=¢ # Enregistre les sommets de I'’ensemble optimum
i:=n

Tantquei>2:

SiA[i—1]=A[i—2] +w;: # Casn°l
| i=i-1 # Ne prend pas v;
Sinon :
S:=Su{v} # Cas n°2, on prend v;
i=i-2 # On exclut vi.1
Sii==1: # Cas de base #2
| S:=Su{vi}
Inverser S

Retourner S

L'algorithme de reconstruction effectue un seul parcours en arriere sur le tableau A et passe
un temps O(1) par itération de boucle, donc il s’exécute en temps O(n).

Par exemple, pour le graphe d’entrée :

3 2 1 6 4 5

... 'algorithme de reconstruction inclut vs (ce qui force I'exclusion de vs), inclut vs4 (ce qui
force I’exclusion de vs), exclut v, et inclut vy :

0 1 2 3 4 5 6

0 3 3 4 9 9 |14

inclurev; exclurev, inclurev, inclure vg
exclure vy exclure vy

Ce qui conduit a la solution optimale {A, D, F}.

Pour un méme schéma de programmation dynamique, les versions top-down avec
mémoisation et bottom-up ont en général la méme complexité asymptotique en pire cas,
car elles résolvent le méme ensemble de sous-problémes.

Toutefois, le top-down mémoisé ne calcule que les sous-problemes effectivement atteints a
partir du probléme initial, ce qui fait qu’en pratique, il peut résoudre moins de cas que le
bottom-up, qui remplit systématiquement toute la table.

15

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

Voici une implémentation en Python :

def reconstruction(G,A):

s =11
i = 1len(G)

while i >= 2:
if A[i-1] »>= A[i-2] + list(G.values())[i-1]:

i=i-1
else:
S.append(list(G.keys())[i-1])
i=1-2
if 1 == 1:

S.append(list(G.keys())[@])
return [S[i] for i in range(len(S)-1,-1,-1)]

graphe a traiter

gr\aphe = {"A":B, IIBII:Z’ "C":l, IIDII:6, "E":4, IIFII:S}
A = poids MWIS bottom_up(graphe)

S = reconstruction(graphe,A)

VI) LES PRINCIPES DE LA PROGRAMMATION DYNAMIQUE

Le concept général de la programmation dynamique peut se résumer en trois étapes. Il se
comprend mieux a travers des exemples ; nous n’en avons pour l'instant qu’un seul, mais
nous étudierons d’autres cas.

Les trois grands principes de la programmation dynamique

1. lIdentifier une collection relativement petite de sous-problémes.

2. Montrer comment résoudre rapidement et correctement les « grands » sous-
problémes a partir des solutions des « plus petits ».

3. Montrer comment déduire rapidement et correctement la solution finale a
partir des solutions de tous les sous-problémes.

Une fois ces trois étapes mises en place, I'algorithme de programmation dynamique peut se
mettre en place : on résout tous les sous-probleémes soit :
- un parun, en allant soit du « plus petit » au « plus grand » (méthode de type bottom-
up itératif) ;
- soit du « plus grand » au « plus petit » (méthode de type top-down récursive), puis
on extrait la solution finale a partir de celles des sous-problémes.

16

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

VI.1. Propriétés souhaitables des sous-problemes

La clé qui permet de débloquer tout le potentiel de la programmation dynamique pour
résoudre un probleme, c’est I'identification de la bonne collection de sous-problemes.

En supposant que I'on effectue au moins une quantité de travail constante pour résoudre
chaque sous-probléme, le nombre de sous-problemes constitue une borne inférieure sur le
temps d’exécution de notre algorithme. Ainsi, on aimerait que ce nombre soit aussi faible
gue possible. Par exemple, notre solution pour le meilleur chemin indépendant pondéré
n’utilisait qu’un nombre linéaire de sous-problémes, ce qui est généralement le meilleur
scénario.

De méme, le temps nécessaire pour résoudre un sous-probléme (étant données les solutions
des plus petits sous-problémes) et pour déduire la solution finale intervient aussi dans le
temps d’exécution global de I'algorithme.

Par exemple, supposons qu’un algorithme résolve au plus f(n) sous-problemes différents (en
les traitant systématiquement du « plus petit » au « plus grand »), en utilisant au plus g(n) de
temps pour chacun, et effectue au plus h(n) de travail de post-traitement pour extraire la
solution finale (ou n désigne la taille de I'entrée). Le temps d’exécution de I'algorithme est
alors au plus :

f(n) < g(n) + h(n)

sous-probléemes temps par sous-probléeme post-traitement

Ces trois étapes demandent de garder respectivement f(n), g(n) et h(n) aussi petits que
possible. Dans notre exemple de base, sans |'étape de post-traitement de reconstruction, on
a f(n) = 0(n), g(n) = O(1) et h(n) = O(1), soit un temps d’exécution global en O(n). Si I'on inclut
I’étape de reconstruction, le terme h(n) passe a O(n), mais le temps d’exécution total O(n) x
O(1) + O(n) = O(n) reste linéaire.

VI.2. Programmation dynamique vs diviser pour régner

On peut remarquer qu’il y a certaines similitudes entre la méthode « diviser pour régner » et
la programmation dynamique, en particulier dans la formulation récursive top-down de
cette derniere. Les deux méthodes résolvent récursivement des sous-problémes plus petits
et combinent leurs résultats pour obtenir une solution au probléme initial. Voici six
différences entre les usages typiques de ces deux méthodes :

1. Chaque appel récursif d’'un algorithme typique de type « diviser pour régner » se fixe une
seule maniére de découper I'entrée en sous-problémes plus petits. Par exemple, dans
I'algorithme de tri par fusion, chaque appel récursif divise son tableau d’entrée en moitié
gauche et moitié droite. L’algorithme de tri rapide appelle une procédure de
partitionnement pour choisir comment découper le tableau d’entrée en deux, puis se
tient a cette division pour le reste de son exécution.

Chaque appel récursif d’un algorithme de programmation dynamique, lui, garde ses
options ouvertes : il considere plusieurs facons de définir des sous-problémes plus petits
et choisit la meilleure. Dans notre exemple d’illustration, chaque appel récursif choisit

17

COURS : INTRODUCTION A LA PROGRAMMATION DYNAMIQUE

entre un sous-probléme avec un sommet en moins et un sous-probléme avec deux
sommets en moins.

2. Comme chaque appel récursif d’un algorithme de programmation dynamique teste
plusieurs choix de sous-problémes plus petits, les mémes sous-problémes réapparaissent
en général dans différents appels récursifs ; mettre en cache les solutions des sous-
probléemes devient alors une optimisation évidente.

Dans la plupart des algorithmes de type « diviser pour régner », tous les sous-problemes
sont distincts et il n’y a aucun intérét a mettre leurs solutions en cache. Par exemple,
dans les algorithmes de tri par fusion et de tri rapide, chaque sous-probléme correspond
a un sous-tableau différent du tableau d’entrée.

3. La plupart des applications « classiques » de la méthode « diviser pour régner »
consistent a remplacer un algorithme simple en temps polynomial par une version plus
rapide. Par exemple, I'algorithme de tri par fusion fait passer le temps d’exécution du tri
d’un tableau de O(n?) a O(n log n).

Les meilleurs algorithmes de la programmation dynamique, eux, sont des algorithmes en
temps polynomial pour des problémes d’optimisation dont les solutions naives (comme
la recherche exhaustive) nécessitent un temps exponentiel.

4. Dans un algorithme « diviser pour régner », les sous-probléemes sont choisis
principalement pour optimiser le temps d’exécution ; la validité des résultats se vérifie
souvent assez facilement. Par exemple, I'algorithme de tri rapide trie toujours
correctement le tableau d’entrée, quels que soient la qualité ou le choix de ses éléments
pivots.

En programmation dynamique, on choisit les sous-problémes pour qu’ils soient
mathématiquement suffisants pour reconstruire une solution optimale. Si on se trompe
la-dessus, I'algorithme devient faux, méme s'il est rapide.

5. Dans un algorithme « diviser pour régner », on applique en général la récursion a des
sous-problémes dont la taille est au plus une fraction constante (par exemple 50 %) de la
taille de I'entrée.

La programmation dynamique, elle, n’a aucun scrupule a appeler la récursion sur des
sous-problémes a peine plus petits que I'entrée, si c’est nécessaire pour la correction.

6. On peut voir la méthode « diviser pour régner » comme un cas particulier de la
programmation dynamique, dans lequel chaque appel récursif choisit une collection fixe
de sous-probleéemes a résoudre récursivement.

En tant que méthode plus sophistiquée, la programmation dynamique s’applique a une
plus grande variété de problemes que la méthode « diviser pour régner », mais elle est
aussi plus exigeante techniquement a utiliser.

Face a un nouveau probléme a résoudre, s'il existe une solution évidente de type « diviser
pour régner », il faut I'utiliser. Si toutes les tentatives pour trouver une solution « diviser
pour régner » échouent, et surtout si elles échouent parce que I'étape de combinaison
semble toujours nécessiter de refaire beaucoup de calculs depuis zéro, il est temps d’essayer
la programmation dynamique.

18

