
Dernière mise à jour Informatique Denis DEFAUCHY – Site web

18/12/2023
2 – Dictionnaires et

programmation dynamique
TD 2-2 – Hachage

Page 1 sur 5
Sujet inspiré du travail de Bernard SALAMITO

et d’un TD de licence d’informatique de l’université de Nice

TD2-2

Hachage

Dictionnaires et

Informatique

http://www.cpge-sii.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Dernière mise à jour Informatique Denis DEFAUCHY – Site web

18/12/2023
2 – Dictionnaires et

programmation dynamique
TD 2-2 – Hachage

Page 2 sur 5
Sujet inspiré du travail de Bernard SALAMITO

et d’un TD de licence d’informatique de l’université de Nice

Exercice 1: Hachage

Fonction hash

Les dictionnaires sont construits en utilisant un principe de hachage des clés. Ce principe permet de

rendre l’accès aux valeurs d’un dictionnaire très rapide. Si le dictionnaire contient 𝑛 ensembles de

clés/valeurs, l’accès à l’un d’eux présente une complexité en moyenne en 𝑂(1) et en 𝑂(𝑛) dans le pire

des cas.

Le hachage est réalisé via une fonction que nous ne développerons pas, mais qui peut être utilisée sous

Python avec la commande hash().

Les objets que nous utilisons le plus sont les entiers, flottants, booléens, tuples, chaines de caractères,

listes, arrays et dictionnaires

Question 1: Trouver les types hachables sous python parmi les types proposés ci -

dessus

La majorité des objets hachables sont les objets non mutables, c’est-à-dire les objets qui ne peuvent

pas être modifiés, dont on ne peut pas changer les propriétés une fois qu’ils ont été définis.

Soit les lignes de commande suivantes :
import sys

sys.hash_info

P = sys.hash_info.modulus

print(P)

Question 2: Comparer P au nombre de valeurs différentes représentables dans le

système que vous utilisez (probablement 64 bits)

Les règles de hachage implémentées en

Python sont disponibles ici (LIEN) et en

voici une capture ci-contre.

Nous n’irons pas plus loin ici. La suite de

ce TD vous fera comprendre l’intérêt du

hachage.

http://www.cpge-sii.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://docs.python.org/fr/3.6/library/stdtypes.html

Dernière mise à jour Informatique Denis DEFAUCHY – Site web

18/12/2023
2 – Dictionnaires et

programmation dynamique
TD 2-2 – Hachage

Page 3 sur 5
Sujet inspiré du travail de Bernard SALAMITO

et d’un TD de licence d’informatique de l’université de Nice

Hachage d’entiers

Soient des entiers et la fonction de hachage h qui à tout entier n, lui associe son reste dans la division

euclidienne par k.

Question 3: Créer la fonction h(n,k)

On souhaite construire un dictionnaire stocké via deux tables, une table de hachage (ou table des

indices) et une table de débordement, en utilisant la fonction de hachage h pour k=10 et des clés

entières.

En voici un exemple :

Table de hachage Table de débordement

Valeur de hachage
ih=h(cle)

Indice débordement
id

0 0

1 0

2 1

3 3

4 0

5 4

6 0

7 0

8 0

9 0

id Clé Valeur Suivant ids

0 None 6

1 12 douze 2

2 32 trente-deux 5

3 43 quarante-trois 6

4 55 cinquante-cinq 0

5 42 quarante-deux 0

6 53 cinquante-trois 0

La clé est hachée afin d’en déterminer l’indice ih dans la table de hachage. Si l’indice de débordement

id associé à ih est nul, la clé n’existe pas dans le dictionnaire. Sinon, id indique l’indice dans la table de

débordement de la première instance du dictionnaire dont la clé possède la valeur de hachage ih.

La table de débordement contient [None,0] si elle est vide. Le second terme de cette première liste

indique l’indice du dernier élément du dictionnaire dans TD. Ensuite, pour chacun de ses éléments, on

trouve la clé, la valeur associée, et l’indice suivant ids de la prochaine valeur dans cette table ayant la

même valeur de hachage. Si cet indice ids est nul, il n’y a plus d’autres éléments ayant la même valeur

de hachage.

On initialise les tables ainsi :
k = 10

TH = [0]*k

TD = [[None,0]]

Remarque : il n’est effectivement pas utile de créer la colonne ih dans la table de hachage, on ne créera

pas non plus l’indice id dans la table de débordement.

http://www.cpge-sii.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Dernière mise à jour Informatique Denis DEFAUCHY – Site web

18/12/2023
2 – Dictionnaires et

programmation dynamique
TD 2-2 – Hachage

Page 4 sur 5
Sujet inspiré du travail de Bernard SALAMITO

et d’un TD de licence d’informatique de l’université de Nice

Dans un premier temps, et pour voir si vous avez tout compris, vous aller compléter les lignes « à la

main », c’est-à-dire imaginer ce qui doit être écrit et/ou modifié pour ajouter des ensembles

(clé,valeur).

Question 4: Compléter les tables « à la main » en imaginant appeler la fonction insere

pour (22,'vingt-deux'), (24,'vingt-quatre') et (53,'test')

ATTENTION : pour la suite, vous devez travailler dans le contexte de la gestion informatique des

dictionnaires. Autrement dit, utiliser val in TD, len(TH), len(TD) par exemple, coûte O(n) avec n le

nombre de clés/valeurs, ce qui est HORRIBLE. Le dictionnaire a pour but d’aller chercher de proche en

proche, sur un nombre très restreint de valeurs dans la table de débordement.

Question 5: Créer une fonction insere(cle,valeur) permettant d’insérer un élément

dans le dictionnaire en mettant à jour les deux tables. On veillera à écraser une valeur

si la clé associée est déjà présente

Question 6: En utilisant la fonction insere, créer les tables proposées à la page

précédente

Vérifier :

Remarque : Vous essaierez de remplacer par deux fois (pour revenir à l’état souhaité du dictionnaire)

une valeur associée à une clé déjà existante. Exemple : insere(32,'Felipe') puis insere(32,'trente-deux')

Question 7: Créer la fonction recherche(cle) renvoyant le booléen True ou False

indiquant si la clé est dans le dictionnaire

Question 8: En supposant que l’on insère n entiers aléatoires dans le dictionnaire,

préciser la complexité en temps de la fonction recherche en fonction de k

Pour supprimer des éléments d’un dictionnaire, la suppression et la mise à jour des deux tables coûte

relativement cher en temps et n’est donc pas implémentée de la sorte. Une idée consiste à remplacer

la valeur associée à la clé à supprimer par None (par exemple) et de ne pas tenir compte des None

dans les fonctions précédentes. Dans un objectif pédagogique, et si vous êtes en avance traitez la

question suivante. Sinon, sautez là !

Question 9: Proposer une fonction supprime(cle) qui supprime la clé du dictionnaire

en supprimant la ligne associée dans la table de débordement en mettant à jour tous

les indices qui le nécessitent dans les deux tables.

Vous vérifierez que votre fonction fonctionne.

http://www.cpge-sii.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Dernière mise à jour Informatique Denis DEFAUCHY – Site web

18/12/2023
2 – Dictionnaires et

programmation dynamique
TD 2-2 – Hachage

Page 5 sur 5
Sujet inspiré du travail de Bernard SALAMITO

et d’un TD de licence d’informatique de l’université de Nice

Exercice 2: Complexité

Question 1: Créer un dictionnaire Dico contenant N=1000 entiers i de 1 à 1000 tel que

Dico[i]=i

Question 2: Observer le hachage de Python hash() pour des entiers entre 1 et 1000 et

estimer la complexité de la recherche d’une clé dans Dico

Pour rappel, le code suivant permet d’afficher dans la console le temps d’exécution des instructions

entre tic et toc :

from time import perf_counter as tps

tic = tps()

instructions

toc = tps()

temps = toc - tic

print(temps)

On souhaite étudier le temps de recherche de la clé N dans le dictionnaire afin de se placer dans le pire

des cas.

On souhaite étudier les instructions suivantes :

- Instruction 1 : Val in Dico
- Instruction 2 : Val in Dico.keys()

- Instruction 3 : Val in L avec avoir écrit au préalable L = list(Dico.keys())

On appelle Ti le temps d’exécution de l’instruction i.

Question 3: Etudier les temps d’exécution Ti pour N en puissance de 10 de 𝟏𝟎𝟑 à 𝟏𝟎𝟖

Remarque : vous pourrez vérifier que hash(108) est toujours égal à 108

Question 4: Préciser les conditions dans lesquelles obtient -on le pire des cas lors

d’une recherche dans un dictionnaire et la complexité associée

Question 5: Préciser la complexité en temps lors de la recherche dans un dictionnaire

Soient :
dic1 = {1:1}

dic2 = {1.0:1}

L = [1]

On appelle t1 le temps d’accès à un terme de dic1, t2 le temps d’accès à un terme de dic2 et t3 le

temps d’accès à un terme de L.

Question 6: Etudier la moyenne du rapport t1/t3 et t2/t3 sur un grand nombre

d’essais et préciser l’origine des différences observées

http://www.cpge-sii.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/

