TD : HACHAGE POLYNOMIAL

TD : HACHAGE POLYNOMIAL

Dans ce TD, vous allez concevoir vos propres tables de hachage afin de comprendre
concretement comment un hachage polynomial répartit des chaines de caracteres et
pourquoi de « mauvais » choix de parametres (base, taille de table paire ou puissance de 2)
peuvent cibler des régularités dans les données et des emplacements vides.

Vous implémenterez la stratégie par chainage en instrumentant chaque opération (insertion,
recherche, suppression). Vous mettrez également en ceuvre une politique de
redimensionnement automatique (seuil 70 %).

1) JEUX DE DONNEES UTILISE

Il'y a trois listes de jeux de données sous forme de chaines de caracteres :
- jeu_unigque : contient 5000 clés distinctes,
- jeu_melange : contient 5000 clés avec 30 % de doublons
- jeu_regulier : contient environ 5000 clés avec de nombreuses fins identiques sur
les derniers caractéres pairs.

Comparaison des jeux : Total / Uniques / Doublons

5000 A mm Total
mm Unigues

m= Doublons

4000 4

[
(=1
o
=3

2000 A

Nombre de chaines

1000 1

Jeu unique Jeu mélangé Jeu régulier

Répartition du dernier caractére (0-9) — %

B Jeu unique
mm Jeu mélangé
= Jeu régulier

20.0 A

17.51

15.0 4

12.5

10.0 4

Pourcentage (%)

7.5

5.0 4

251

0.0 -

3 4 5 6
Dernier caractére

Vous pouvez visualiser ces données a |'aide des fonctions Affiche_Repartion_Donnees()
et Affiche_Repartion_Derniers_Caracteres() qui sont commentées par défaut dans le
fichier source.




TD : HACHAGE POLYNOMIAL

Il) RAPPELS SUR LE HACHAGE POLYNOMIAL

Le principe du hachage polynomial est d’encoder une chaine de caractére en une valeur
numérique (code de hachage) en utilisant la valeur du code ASCIlI/Unicode de chaque
caractere. Elle consiste a itérer sur les caractéres un par un et de maintenir une somme
courante. A chaque caractére, on multiplie la somme par une constante, on ajoute le
nouveau caractere, puis, si nécessaire, on prend un modulo pour éviter les dépassements :

Hachage polynomial

1. Encoder chaque caractére en un entier (ASCIlI/Unicode)
2. Itérer sur la chaine : on maintient une valeur k
3. A chaque caractére de code x, on met a jour :

ki = (ki-1:B + xi) mod M

B : base (une constante > taille de I'alphabet, ex. 131 ou 257, en évitant les
puissances de 2).

M = modulo (grand entier pour éviter les débordements et réduire les collisions)
(on peut prendre un grand nombre premier M = 1 000 000 007, ou bien s’appuyer
sur le débordement 64 bits non signé en prenant M = 2%)

4. Pour obtenir un numéro de compartiment entre 0 et n-1, on peut appliquer
ensuite la fonction de compression a base de modulo :

h(k) = k mod n

II1) HACHAGE POLYNOMIAL
Dans cette partie, on utilise le fichier « TD1.1_CodeHash.py »

lll.1. Code de hachage

Ecrire la fonction hash_poly(s : str, B : int, M :int) quiprend en entrée une chaine
de caracteres s, une base B et un modulo M et qui retourne un entier en utilisant la méthode
du hachage polynomial. Utiliser la fonction ord() afin d’avoir la valeur Unicode d’un
caractere.

Vérifier : hash_poly("abc",257,10%%x9+7) = 6432038
hash_poly("",257,101) = 0

l11.2. Effet d’une régularité des données avec un mauvais choix de (B, M)
On prend M=32 et B=128.

1. Calculer les codes de hachage de « abc », « bc » et « ¢ ». Que remarquez-vous ?
Expliquer.

2. Afficher la distribution des codes de hachage des jeux de données avec la fonction
Distribution_Code_Hash(valeurs, M, B) (implémentée dans la bibliotheque
malib_td1)

3. Comparer avec M=33 et B=128.




TD : HACHAGE POLYNOMIAL

IV) TABLE DE HACHAGE AVEC CHAINAGE

Dans cette partie, on utilise le fichier « TD1.2_TableHachage_Chainage.py ».

IV.1. Fonction de hachage {code hash + compression}

1. Recopier votre code de la fonction hash_poly() dans le fichier.

2. Ecrire la fonction de compression f_Compression(code, n) prenant en entrée le code
du hash, le nombre de compartiments n de la table de hachage et retournant I'indice de
I’emplacement ou stocker la valeur.

3. Ecrire la fonction f_Hachage(cle, B, M, n) permettant d’appliquer la fonction de
hachage {hash _code + compression} sur une clé de type chaine de caractére et de
retourner le hash correspondant.

Tester avec n =10007 : f_Hachage("abc",257,10%%9+7,10000+7) = 7544
f_Hachage("abcdefg",257,10%%9+7,10000+7) = 6625

4. Créer la table de hachage vide : table_hachage = [[] for i in range(n)]

IV.2. Insertion d’un élément

1. Ecrire la fonction f_Insert(element, table) quiajoute un élément (chaine de
caractéres) par chainage et retourne le facteur de charge courant. Dans cette version, on
accepte que des doublons puissent étre stockés.

Vous pourrez utiliser une variable globale n_total pour suivre le nombre total d’éléments
enregistrés dans la table.

Tester : >>> f_Insert("user8346", table_hachage)
9.9930048965724e-05

>>> table_hachage[3514]
['user8346']

>>> f_Insert("user9490", table_hachage)
0.000199860097931448

>>> table_hachage[3514]
['user8346', 'user9490']

>>> f_Insert("user9490", table_hachage)
0.00029979014689717197

>>> table_hachage[3514]
['user8346', 'user9490', 'user9490']

2. Modifier votre fonction pour gérer les doublons et faire en sorte que la table de hachage
n’en contienne pas.

Tester pour vérifier que la gestion des doublons fonctionne correctement.




TD : HACHAGE POLYNOMIAL

IV.3. Recherche d’un élément

La position d’'un élément dans la table de hachage est donnée par une liste de la forme :
[indice_compartiment, indice_debordement]

..ol indice_compartiment donne la position de la valeur recherchée dans la table de
hachage et indice_debordement la position dans la sous-liste ol sont enregistrées les
collisions.

1. Ecrire la fonction f_Recherche(element, table) quiretourne la position de I’élément
dans la table, s’il existe, et qui retourne None sinon.

Tester : >>> f_Recherche("user8346", table_hachage)
[3514, 0]
>>> f_Recherche("user9490", table_hachage)
[3514, 1]
>>> f_Recherche("abc", table_hachage)
-1

IV.4. Suppression d’un élément

1. Ecrire la fonction f_Supprime(element, table) qui supprime un élément de la table,
et qui retourne le facteur de charge apres la suppression ou retourne -1 si I’élément n’a
pas été trouvé.

Tester : >>> table_hachage[3514]
['user8346', 'user9490']

>>> f_Supprime("user9490", table_hachage)
>>> 0.00029979014689717197

>>> table_hachage[3514]
['user8346']

>>> f_Supprime("abs", table_hachage)
-1

IV.5. Distribution du nombre de collisions

1. Ecrire une fonction f_RemplirTable(jeu, table) quiinsére la totalité des données d’un
jeu dans une table.

2. Remplir trois tables : table_jeu_unique (avec le jeu jeu_unique), table_melange
(avec le jeu de données jeu_melange) et table_regulier (avec le jeu_regulier).

3. Afficher la distribution du nombre de collisions de chaque table avec la fonction
Distribution_Compartiments(nbr_par_case) implémentée dans la librairie

malib_td1. Ici nbr_par_case est la liste des nombres d’élément par compartiment.

3. Commenter les résultats obtenus.




TD : HACHAGE POLYNOMIAL

Observation attendue :

Histogramme des tailles des compartiments
8000

I unique
. melange

7000 1 I regulier

6000 -

5000 A

4000 ~

Fréguence

3000

2000 -

1000 A

0- T T T
1 2 3 4 5 6 7 8 9 10

Taille du compartiment

IV.6. Gestion du facteur de charge

1. Augmenter le nombre de données de chaque jeu en modifiant la taille des jeux de
données x10.

2. Afficher la distribution des du nombre de collisions de chaque table comme
précédemment.

On observe que les compartiments se remplissent davantage et que comme précédemment
le jeu unique concentre davantage de collisions que les autres jeux :

Histogramme des tailles des compartiments

Il unigque
B melange
I regulier

3000 -

2500 A

2000 A

=

w

o

o
1

Fréquence

1000 +

500 A

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Taille du compartiment




TD : HACHAGE POLYNOMIAL

3. Ecrire la fonction f_NbrPremier(val) quiretourne le premier nombre premier
strictement supérieur a la valeur de val.

Tester : >>> f_NbrPremier(256) >>> f_NbrPremier(10000)
257 10007

4. Ecrire la fonction f_Insert_avec_charge(element, table) quiinsére un élémenten
maintenant un facteur de charge inférieur a 70% (en doublant la capacité n au plus
proche nombre premier supérieur a 2-nlors d’'un dépassement).

5. Ecrire une fonction f_RemplirTableAvecCharge(jeu, table) quiinsére la totalité des
données d’un jeu dans une table avec gestion du facteur de charge.

6. Refaire I'expérience de remplissage des trois tables en utilisant cette fois-ci la fonction
f_Insert_avec_charge(element, table) et vérifier que la répartition des données

dans les compartiments s’améliore.

Histogramme des tailles des compartiments

I unique
melange
120000 1 B regulier

100000 -

80000 ~

Fréquence

60000 -

40000 -

20000 ~

0- T T
1 2 3 4 5 6
Taille du compartiment

Vous pouvez faire la suite si vous avez encore du temps !

IV.7. Complexité des opérations d’insertion

L'utilisation des listes dans nos fonctions d’insertion ne permet pas de prendre en compte
les délais d’insertion pour mesurer la complexité en temps car les listes python sont
optimisées et gérées dynamiquement.

Pour avoir une meilleure image de ce que représente en réalité le temps d’insertion dans la
table de hachage, nous allons nous baser sur le nombre de valeurs déja enregistrées dans un
compartiment de la table de hachage avant I'insertion d'une nouvelle valeur.




TD : HACHAGE POLYNOMIAL

L’'objectif est de remplir une table de taille n = 10007 avec 300 000 valeurs issues du jeu
unique, et d’enregistrer le nombre de cases du compartiment ou cette valeur sera placée a
chaque tentative d’insertion. Cette métrique nous donnera une idée de la complexité du
temps d’insertion dans la table de hachage car la complexité dépend du temps mis lors de la
vérification des doublons (et plus il y a de cases remplies dans un compartiment, plus cette
vérification sera longue).

1. Créer un jeu de données de 100k valeurs en modifiant la taille du jeu unique.

2. Créer une fonction f_CountRemplirTable(jeu, table) qui permet de remplir la table
en renvoyant deux listes : alpha et count, contenant pour la premiére la valeur du
facteur de charge a chaque insertion d’un élément, et pour la seconde le nombre de
cases déja remplies dans le compartiment cible lors d’une insertion.

3. Créer une fonction f_MoyenneMobile(liste, fenetre) quiretourne une liste
contenant les moyennes des valeurs contenues dans la liste, sur une fenétre de taille
donnée.

Vous pouvez utiliser np.mean(liste[x:x+y]) pour calculer la moyenne des données de
la liste sur I'intervalle [x,x+y].

Vous ferez attention a ce que la liste retournée ait la méme longueur que la liste traitée
(ajouter des 0 au début de la liste avant de la retourner).

4. Afficher les courbes de la moyenne mobile (prendre par exemple 1000) du nombre de
cases lors des opérations d’insertion en fonction du taux de charge de la table.

Résultat attendu (sur 300k valeurs) :

Temps moyen d'insertion en fonction du facteur de charge

30

25 1

20 1

15 A

10 +

Nombre moyen de cases

0 5 10 15 20 25 30
Facteur de charge

Cette courbe semble étre en O(1 + o). Pour la comparer a ce qu’on aurait dans le pire des
cas, on va refaire la méme mesure mais sur un jeu de donné qui ne contient que des
doublons (pour forcer les collisions).




TD : HACHAGE POLYNOMIAL

5. Créer un jeu de la méme taille de précédemment, et utiliser la fonction d’insertion qui ne
gére pas les doublons pour remplir la table (afin de forcer le remplissage du
compartiment) en effectuant les mémes mesures que précédemment. Afficher les
courbes dans les deux cas.

Résultat attendu :

F 300000
30 4
L 250000 _
wv
25 A g
) )
g >
= - 200000 &
> 204 9
3 g
a F 150000 B
B 15 1 =
] D
> "0
" | =
% 10 100000 2
8 g
S
5 4 F 50000
0 - -0

0 5 10 15 20 25 30
Facteur de charge

Quelle est la complexité de I'opération d’insertion dans le pire des cas ?

6. Lafonction de hachage utilisée garantit-elle une complexité en O(1 + o) sur
I'insertion comme le ferait une fonction universelle ?




