EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DU CHAPITRE | : INTRODUCTION

Exercice .1 — Est-ce qu’une table de hachage est adaptée ?

Un magasin veut stocker pour chaque code d’article (par ex 10542, 75601, etc.) la quantité
en stock (3,5, 12,...)

Proposer une maniéere de stocker ces informations avec :
a) une liste Python,
b) un dictionnaire Python.

Pour chaque solution, indiquer :
- comment on récupeére la quantité du code 75601,
- combien d’opérations cela prend « en gros » si la liste contient 10 000 articles.

Laquelle des deux structures semble la plus adaptée ? Pourquoi ?

Exercice 1.2 — Clé ou valeur ?

On veut concevoir une structure de données pour chaque situation. Pour chaque cas,
proposer un choix de clé.
1. Gestion des employés d’une entreprise : on dispose du nom, prénom, numéro de
sécu, date d’embauche.
2. Catalogue d’un site de vente en ligne : on a un identifiant numérique, le nom du
produit, et le prix.
3. Agenda d’événements : chaque événement a une date/heure, un titre, un lieu.

Pour chaque scénario, préciser pour le choix de clé :
- silaclé est « naturellement unique » ;
- sielle est facilement hashable (nombre, chaine raisonnable) ;
- sielle risque de changer (mauvais choix de clé).

Quizz 1 — Notion de clé & dictionnaire

1. Dans une table de hachage, une clé sert principalement a:
a. Stocker les données elles-mémes
b. Indiquer la taille de la table
c. ldentifier de maniere (presque) unique une valeur
d. Trier les valeurs par ordre croissant

2. Dans un dictionnaire Python :

d={}
d["Alice"] = 1
d["Alice"] = 2

a. On obtient une erreur

b. Le dictionnaire contient deux entrées pour "Alice"
c. Lavaleur associée a "Alice" est 2

d. Lavaleur associée a "Alice" est 1

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

3. Laquelle de ces propositions décrit le mieux I'intérét d’une table de hachage ?
a. Trier des données trés rapidement
b. Rechercher, insérer, supprimer par clé en temps moyen constant
c. Compresser des données
d. Représenter des données en forme d’arbre
4. Pour stocker des numéros de sécurité sociale associés a des fiches, la meilleure structure
est:
Une liste triée de fiches
Une pile
Une table de hachage indexée par le numéro de sécu
d. Unefile FIFO
5. (Vrai/Faux) Une méme valeur peut apparaitre plusieurs fois dans un dictionnaire Python.
6. (Vrai/Faux) Une méme clé peut apparaitre plusieurs fois dans un dictionnaire Python.

oo o

Exercice Python 1 — Déduplication avec set / dict

On recoit une liste d’adresses IP (sous forme de chaines). Compléter la fonction pour
renvoyer la liste des IP distinctes, dans I'ordre d’apparition.

def ip_uniques(ips):
vues = set()
resultat = []
for ip in ips:
TODO : si ip n'a pas encore été vue,
1'ajouter a "vues" et a "resultat"
if

return resultat

Test possible :
ips = [llAll, l|Bl|’ ||A||’ ||C||’ ||B||’ ||D||]
print(ip_uniques(ips)) # attendu : ["A", "B", "C", "D"]

Exercice Python 2 — Compter les occurrences de mots

Compléter cette fonction qui compte le nombre d’occurrences de chaque mot dans une

liste.
def compter_mots(mots):
d = {}
for mot in mots:
TODO : utiliser d[mot] pour compter les occurrences
if mot in d:

return d

Test possible :
mots = ["Un", "deUX", "Un", Iltr\oislll "deUX", Ilunll]
print(compter_mots(mots)) # {"un": 3, "deux": 2, "trois": 1}

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DU CHAPITRE Il : OPERATIONS PRISES EN CHARGE PAR LES TABLES DE HACHAGE

Exercice Il.1 — Identifier les opérations

On considére une table de hachage qui mémorise les clients d’un site avec leur identifiant
client.
Pour chacune des actions suivantes, indiquer si c’est une recherche, une insertion ou une
suppression.
1. Vérifier si le client 1234 existe déja dans la base.
2. Ajouter un nouveau client 5678.
3. Supprimer le compte du client 1234.
4. Mettre a jour I'adresse e-mail du client 5678.
Question bonus : en termes d’opérations de base sur la table de hachage, que
se cache-t-il derriere cette mise a jour ?

Exercice 1.2 — Tableau impossible

1. On suppose que I'on indexe un tableau par toutes les chaines de longueur exactement 5
sur l'alphabet A-Z.
a. Combien de cases comporte ce tableau ?
b. Pourquoi est-ce irréaliste en pratique (mémoire) ?
2. On suppose que I'on n’utilise finalement que 1000 prénoms distincts parmi toutes ces
chaines possibles.
a. Combien de cases du tableau sont effectivement utilisées ?
b. Quelle proportion de cases est vide ?
3. Expliquer en quelques lignes pourquoi une table de hachage qui utilise en gros une case
par élément stocké est plus intéressante que ce tableau « gigantesque mais presque
vide ».

EXERCICES DU CHAPITRE Ill : EXEMPLES D’APPLICATIONS

Exercice lll.1 — Simuler une déduplication
On recoit un flux d’adresses IP (simplifiées) : [A, B, C, A, D, B, E, C, F]
On veut ne garder qu’une occurrence de chaque adresse, en utilisant, pour chaque nouvelle
IPx:
- sixestdéja présente dans la table de hachage, on l'ignore ;
- sinon, on l'insére.

1. Alafin, quelles sont les IP distinctes observées ?
2. Sion voulait compter le nombre de visites par IP, comment adapter I'algorithme (en
guelques phrases) ?

Exercice Ill.2 — Pourquoi mémoriser les sommets visités ?
On considére un graphe simple (avec au moins un cycle).
1. Expliquer ce qui se passe si, dans un parcours en largeur (BFS), on ne mémorise pas
les sommets déja visités.
2. On décide d’utiliser une table de hachage visited.
a. Que stocke-t-on comme clé dans cette table ?
b. Quand ajoute-t-on un sommet dans visited ?

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice Python 3 — BFS avec ensemble visited

On représente un graphe non orienté par un dictionnaire adj : chaque sommet a la liste de
ses voisins. Compléter un BFS qui renvoie les sommets atteignables depuis une source s.

from collections import deque

adj = {
0: [1, 21,
1: [0, 31,
2: [0],
3: [11,

H

def bfs(adj, s):
visites = []
file = deque()
resultat = []

TODO : initialisation

while file:
u = file.popleft()
resultat.append(u)
for v in adj[u]:
TODO : si v n'a pas été visité,
le marquer et 1'ajouter a la file
if :

return resultat

EXERCICES DU CHAPITRE IV : IMPLEMENTATION - IDEES GENERALES

Exercice IV.1 — Pourquoi la liste n’est pas suffisante

On stocke 10 000 adresses IP ayant visité un site dans une liste Python.
1. Pour vérifier si une IP donnée ip0 est dans la liste, expliquer ce que fait Python dans
le pire cas (combien d’éléments examinés ?).
2. Onremplace la liste par une table de hachage.
a. Quelle information supplémentaire utilise-t-on pour éviter de balayer toute la
structure ?
b. En quelques mots, pourquoi cela permet (en général) d’avoir un temps
proche de constant ?

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice IV.2 — Calculer des indices de hachage

On suppose que les clés sont des nombres entiers et qu’on utilise une table de taille n =10

avec:
h(k) = kmod 10

1. Calculer h(k) pour k=7, 12, 25, 30, 44.

2. Oninsére ces clés dans la table (on ignore pour I'instant la gestion des collisions).
Indiquer dans quelles cases elles vont.

3. Est-ce que cette fonction de hachage semble répartir raisonnablement ces valeurs
sur{0,...,9} ?

Exercice IV.3 - Collisions inévitables

1. Expliquer ce que dit le principe des tiroirs et pourquoi il garantit qu’avec plus de clés
gue de cases, il y aura au moins une collision.

2. On rappelle que 23 personnes suffisent pour avoir = 50 % de chances qu’au moins
deux partagent le méme jour d’anniversaire. En quoi cet exemple montre que les
collisions arrivent bien plus t6t qu’on ne le pense intuitivement ?

3. Pourquoi ces idées justifient qu’on cesse d’espérer une table « sans collisions » dés
gu’elle commence a se remplir ?

Exercice IV.4 — Simuler une table avec chainage

Table avec 5 seaux (indices 0 a 4).
Fonction de hachage : h(k)=k mod 5.
Collisions gérées par chainage (liste dans chaque seau).

On insere successivement les clés : 7,12, 17, 22, 3, 8.
1. Pour chaque clé, calculer h(k) et indiquer dans quel seau elle est ajoutée.
2. Donner I'état final de la table, sous la forme :

a. 0:]..1]
b. 1:[..]
C.

3. Combien d’éléments contient, en moyenne, un seau ?
4. Sil'onrecherche la clé 22, quels éléments sont inspectés, et dans quel ordre ?

Exercice IV.5 — Sondage linéaire a la main

Table de taille 7 (indices 0...6). Fonction de hachage : h(k)=kmod 7.

On utilise le sondage linéaire : indices testés h(k), h(k)+1, h(k)+2, ... (mod 7).
Oninsére : 10, 24, 31, 45, 18.

1. Pourchaque clé, indiquer :
a. h(k) initial,
b. la suite des indices sondés,
c. l'indice final d’insertion.
2. Donner I'état final de la table.
Pour rechercher 18, indiquer quels indices sont sondés (et pourquoi on s’arréte).
4. Pour rechercher 11, quels indices seraient sondés, et a quel moment conclure qu'il
n’est pas dans la table ?

w

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice IV.6 — Bonne ou mauvaise fonction de hachage ?

On suppose une table de taille n = 1000. Pour chaque fonction, dire si, intuitivement, elle est
« correcte » ou dangereuse pour les données décrites.

1. Cas1l:

o h(k)=0

o Données : n'importe quelles clés entiéeres.
2. Cas?2

o h(k)=kmod 1000
o Données : les salaires de I'entreprise, multiples de 1000 (23 000, 45 000, ...).

o h(k)=(a-k+b) mod 1000 avec a,b fixés.
o Données : salaires multiples de 1000 + d’autres nombres variés.

o h(chaine) = hachage polynomial + modulo n, avec n choisi premier, loin d’une
puissance de 2 ou de 10.
o Données : mots de passe ou chaines trés variées.
Pour chaque cas :
o Ou risque-t-on des collisions massives ?
o Quels cas semblent plus « robustes » ?

b

Quizz 2 - Fonction de hachage & collisions

1. Une fonction de hachage h: U = {0, ..., n-1} doit étre :
a. Lente et trés compliquée
b. Déterministe et rapide
c. Aléatoire a chaque appel (pour une méme clé)
d. Obligatoirement injective
2. Une collision survient quand :
a. Deux clés différentes ont des valeurs différentes
b. Deux clés différentes ont la méme valeur
c. Deux clés différentes sont envoyées dans le méme compartiment
d. Latable est pleine
Le principe des tiroirs dit que s’il y a :
a. Moins de clés que de compartiments, il y a forcément une collision
b. Plus de clés que de compartiments, il y a forcément une collision
c. Autant de clés que de compartiments, il n’y a jamais de collision
d. Au moins deux compartiments vides
4. Parmi ces fonctions, laquelle est manifestement une trés mauvaise fonction de

w

hachage ?
a. h(k)=kmodn
b. h(k)=0

c. h(k)=(3k+5)modn
d. h(k) =(k*+ 1) modn
. (Vrai/Faux) On peut concevoir une fonction de hachage qui n’a jamais de collision,
guel que soit le jeu de données, si on choisit bien n.

9]

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Quizz 3 — Chainage & adressage ouvert

1. Avec le chainage, chaque compartiment de la table contient :
a. Uneseuleclé
b. Une liste de toutes les clés qui y tombent
¢. Un pointeur vers une autre table de hachage
d. Une valeur booléenne
2. Avec I'adressage ouvert (sondage linéaire), lorsqu’une case est occupée :
a. Onremplace son contenu
b. On redimensionne immédiatement la table
c. On cherche une autre case selon une séquence définie
d. Oninsére la clé dans une liste en dehors de la table
3. Uninconvénient du sondage linéaire est :
a. Il ne gere pas les collisions
b. Il estimpossible a implémenter
c. Il provoque du clustering (grappes de cases occupées)
d. Il nécessite que n soit premier
4. (Vrai/Faux) Avec I'adressage ouvert, certaines cases peuvent étre marquées comme
« supprimées » (DUMMY) sans redevenir completement vides.
5. (Vrai/Faux) Avec le chainage, la longueur moyenne des listes augmente avec le
facteur de charge a.

Exercice Python 4 — Mini table avec chainage

On veut implémenter une mini table de hachage avec chainage, ou les clés sont des entiers.
On utilise une liste de listes table et une fonction h(k) = k % len(table).

Compléter les fonctions inserer et rechercher :

def creer_table(n):
crée une table avec n seaux vides
return [[] for _ in range(n)]

def h(k, n):
return K % n

def inserer(table, cle):

n = len(table)

i = h(cle, n)

seau = table[il
insérer "cle" dans le seau si elle ne s'y trouve pas déja
if :

def rechercher(table, cle):
n = len(table)
i = h(cle, n)
seau = table[il
renvoyer True si "cle" est dans 1le seau, False sinon
for x in seau:
if

return True

return

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice Python 6 — Simuler I’adressage ouvert

On veut écrire une mini table avec adressage ouvert et sondage linéaire pour des clés
entieres. Les cases vides contiennent None. Compléter la fonction inserer.

def creer_table(n):
return [None] * n

def h(k, n):
return K % n

def inserer(table, cle):
n = len(table)
i = h(cle, n)
sonder jusqu'a trouver une case vide ou la clé déja présente
for _ in range(n): # on limite a n sondes
if table[i] is None:
____________________________ # insérer la clé ici
return
elif table[i] == cle:
return # déja présent
i=(1+1)%n # case suivante

tab = creer_table(5)
for k in [1, 6, 11]:
inserer(tab, k)
print(tab) # on doit voir que toutes les clés sont présentes

EXERCICES DU CHAPITRE V : FACTEUR DE CHARGE ET PERFORMANCES

Exercice V.1 — Calculer et interpréter a

Une table de hachage posséde un tableau de taille n = 100. On considere différents nombres
d’éléments stockés :

1. 20 éléments

2. 50 éléments

3. 80 éléments
Pour chacun :

- calculer le facteur de charge a,

- commenter en une phrase I'effet intuitif sur les performances (chainage ou

adressage ouvert).

Exercice V.2 — Admissible ou pas ?

Pour chaque situation suivante, dire si la recherche d’un élément est en pratique plutot O(1)
ou tend vers O(n), et pourquoi

1. Table avec chainage, n=1000, a=0,5, bonne fonction de hachage.

2. Table avec chainage, n=1000, mais toutes les clés tombent dans le méme seau.

3. Table avec adressage ouvert (double hachage), n=10 000, a=0,7.

4. Table avec adressage ouvert (sondage linéaire), n=10 000, a=0,95.

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice V.3 — Faut-il redimensionner ?

On a une table de hachage avec n = 1000 seaux.
On insére peu a peu des éléments, et on suit a :
1. A 400 éléments : que vaut a ? Redimensionner ou non ?
2. A 800 éléments : que vaut o ? Redimensionner ou non ?
3. On décide de redimensionner a n = 2000 quand a dépasse 0,7.
a. Que devient a juste apres le redimensionnement si on avait 800 éléments ?
b. Pourquoi accepter ce « gros colt ponctuel » (rehachage de tous les éléments)
malgré tout ?

Quizz 4 — Facteur de charge & performances

1. Le facteur de charge a d’une table de hachage est :
a. n/(nombre d’éléments)
b. (nombre d’éléments) / n
c. (nombre de collisions) / n
d. Toujourségalal
2. Siaaugmente fortement (proche de 1) dans une table avec adressage ouvert, alors :
a. Lestemps de recherche deviennent proches de O(1)
b. Les temps de recherche tendent vers O(n)
c. Cela ne changerien
d. Les clés sont triées automatiquement
3. Redimensionner une table de hachage (augmenter n et tout ré-insérer) :
a. Est toujours une mauvaise idée
b. Ne change pas le facteur de charge
c. Peut codter cher ponctuellement mais améliore le temps moyen
d. Supprime toutes les collisions futures
4. (Vrai/Faux) On redimensionne souvent la table quand le facteur de charge dépasse
un certain seuil (par ex. 0,7).
5. (Vrai/Faux) Le co(it amorti d’une insertion reste O(1) méme si, de temps en temps,
une insertion déclenche un redimensionnement colteux.

EXERCICES DU CHAPITRE VI : FONCTIONS DE HACHAGE UNIVERSELLES

Exercice VI.1 — Pourquoi une seule fonction ne suffit pas ?

1. Expliquer pourquoi aucune fonction de hachage fixe h ne peut garantir de bonnes
performances pour tous les jeux de données possibles.
(Indication : imaginer un adversaire qui choisit les clés aprés avoir vu h)

2. Comparer les deux garanties :

. (A) « Pour chaque jeu de données, il existe une fonction de hachage qui se
comporte bien. »
° (B) « Pour chaque jeu de données, si on choisit une fonction au hasard

dans H, elle se comporte bien en moyenne. »
3. Pourquoi (B) est-elle plus intéressante pour I'analyse de la table de hachage en
pratique ?

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice VI.2 — Cette famille est-elle universelle ?
On considére deux familles de fonctions de hachage Hy et H{,, de U vers {0, ..., n-1}.
1. Famille H;: I'ensemble de toutes les fonctions de U vers {0, ..., n-1}.
a. Montrer que H; est une famille universelle, en utilisant Pr[h(x)=h(y)]<1/n

pour x #y.
2. Famille H; : n fonctions constantes : pour chaque i € {0, ..., n—1}, hi(k)=i pour toutes
les clés k.
a. Vérifier que pour toute clé k fixée et pour tout i, la probabilité que h(k)=i vaut
1/n.

b. Expliquer pourquoi, malgré cela, H, n’est pas universelle (en étudiant
Pr[h(x)=h(y)] pour xzy).

Exercice VI.3 — Hachage d’adresses IP : calcul concret

On se place dans un exemple :
- n=11 (nombre de compartiments, premier),
- a=(al,a2,a3,a4)=(2,5,3,1)
- Deux«IP»:x=(10,0,5,3)ety=(10,0, 5, 4).

On définit : ha(z)=a-z mod 11
1. Calculer ha(x) et ha(y).
2. Y a-t-il collision pour ce choix de a ?
3. Combien d’opérations élémentaires (multiplications, additions, modulo) as-t-on
effectué pour un hachage ? Pourquoi peut-on dire que c’est en temps constant ?
4. Expliquer pourquoi il est utile que 11 soit premier.

Exercice VI.4 — Pourquoi choisir n premier, > 255 ?

1. Expliquer pourquoi il est raisonnable d’imposer n > 255 quand chaque composante
d’une IP vaut entre 0 et 255.
2. Donner deux raisons pour lesquelles il est préférable que n soit premier plutét que
512 (29):
a. du point de vue théorique (structure de Z/nZ),
b. du point de vue de la répartition des valeurs modulo n.
3. Relier ce choix aux recommandations déja vues pour le nombre de compartiments
d’une table de hachage.

Exercice VI.5 — Longueur moyenne d’un seau avec hachage universel

Table avec chainage, n compartiments, m clés, facteur de charge a=m/n.
1. Onfixe une clé x (non présente dans la table) et on regarde le compartiment h(x).
Soit S 'ensemble des m clés insérées.
o Pourchaquey €S, définir Xy =1 si y tombe dans le méme compartiment que
X, 0 sinon par une relation faisant intervenir h(x) et h(y).
o Exprimer la longueur du seau h(x) en fonction des X,.
2. Enutilisant l'universalité, donner la borne supérieure de E[X,] pour y # x en fonction
den.
En déduire que I'espérance de la longueur du seau h(x) est au plus a.
4. Interpréter : que signifie « le temps d’une recherche infructueuse est en O(1 + a) » si
o est borné (parex.a<2)?

w

10

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Quizz 5 — Hachage universel

1. Une famille de hachage universelle garantit (grossierement) que pour toutes paires xy :
A. h(x) = h(y) toujours
B. h(x) # h(y) toujours
C. La probabilité que h(x) = h(y) est petite (< 1/n)
D. Les collisions sont impossibles
2. Le but de choisir une fonction de hachage au hasard dans une famille est :
A. D’empécher totalement les collisions
B. De rendre la fonction plus lente
C. De n’avoir aucune garantie
D. De garantir de bonnes performances en moyenne, méme pour des données
adverses

EXERCICES DU CHAPITRE VII : LES DICTIONNAIRES PYTHON

Exercice VII.1 — Table d’indices vs table compacte

Répondre en quelques phrases :

1. Role de la table d’indices : que contient une case ? pourquoi est-elle clairsemée ?

2. Roéle de la table compacte d’entrées : que contient chaque entrée en mode combiné
? pourquoi est-elle dense ?

3. Comment cette organisation permet-elle de préserver I'ordre d’insertion lors de
I'itération sur le dictionnaire ?

4. Pourquoi cette table compacte améliore-t-elle la localité cache par rapport a des
pointeurs dispersés ?

Exercice VII.2 — Comprendrei=h & (m-1)
On suppose : m =8, donc m =23 et m-1=7; trois valeurs de hash : hy=13, h, =42 et hs =57
1. Calculer pour chaque h;:
a. himod8
b. hi&7
2. Vérifier que les deux résultats coincident. Conclure que i=h & (m - 1) équivautai=h
% m quand m est une puissance de 2.
3. Donner deux raisons pour lesquelles cette opération de masquage peut étre plus
rapide qu’un modulo général.

11

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Exercice VII.4 — Insertion avec EMPTY et DUMMY
Table d’indices de taille 8 (indices 0 a 7) et table compacte avec deux entrées.

Table compacte :

Adresse mémoire 0 1

(hash("a"), ptr_"a", ptr_1) (hash("b"), ptr_"b", ptr_2)

Table d’indices :

i 0

Valeur DUMMY EMPTY | EMPTY | EMPTY | EMPTY

On suppose :
hash("c") compressé - indice initial 1,
hash("b") compressé - indice initial 3,
sondage linéaire :i,i+1,i+ 2, .. (mod 8).

On effectue :
1. d["c"]=3
2. d["b"] =5 (mise a jour)
3. deld["a"] (on met DUMMY a son indice)
4. d["d"] =4 avec hash compressé donnant l'indice initial 1.

Pour chaque opération :

donner la suite d’indices sondés ;

dire si on rencontre EMPTY, DUMMY ou une entrée existante, et ce qui se passe ;
donner I'état final de la table d’indices et de la table compacte.

Exercice VII.5 — CoGt moyen vs pire cas dans dict

Pour chaque situation, dire si le colt moyen d’une opération (d[clé], d[clé] = val, del d[clé])
est pratiquement O(1) ou peut approcher O(n), et pourquoi.

1. Dictionnaire classique, 10 000 entrées, a = 0,6, clés variées, pas d’attaque.

2. Dictionnaire attaqué : des milliers de chaines choisies pour provoquer des collisions
(sans hachage randomisé).

3. Méme situation qu’en 2, mais avec hachage randomisé pour les str et
redimensionnement (comme en Python moderne).

4. Dictionnaire trés gros ou une unique insertion déclenche un redimensionnement et

le re-hachage de toutes les entrées.

12

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

Quizz 6 — Dictionnaires Python

1. Dans un dictionnaire Python moderne, la table interne d’indices :

A. Est toujours pleine a 100 %
B. Est souvent clairsemée (sparse)

C. Contient toutes les données (clés et valeurs)

D. Est triée par ordre alphabétique
2. Dans un dict Python, les clés doivent étre :

A. Mutables (objet qui peut étre modifié aprés sa création)

B. Non hashables

C. Hashables et (en pratique) immuables (une fois créé, le contenu ne change

plus)
D. Obligatoirement des chaines

3. (Vrai/Faux) Le hachage des chaines (str) en Python est randomisé pour limiter les

attaques par collisions.

4. (Vrai/Faux) Parcourir un dictionnaire avec for k in d: se fait dans I'ordre de hachage

des clés, sans lien avec I'ordre d’insertion.

Exercice Python 5 — Clés hashables ou non

Pour chaque insertion ci-dessous, dire si elle fonctionne ou provoque une erreur, et

pourquoi. Proposer une correction pour les lignes problématiques.

d = {}

d[42] = "entier"
d["hello"] = "chaine"
d[(1, 2, 3)] = "tuple"

liste = [1, 2, 3]
d[liste] = "liste mutable"

ens = {1, 2, 3}
d[ens] = "ensemble mutable"

Python 6 — Compter les occurrences de mots

def compter mots (mots):
d = {}
for mot in mots:
if mot in d:
d[mot] += 1

else:
d[mot] =1
return d
mots = ["un", "deux", "un", "trois", "deux'",
print (compter mots(mots)) # {"un": 3,

"un"

"deux": 2,

"trois":

1}

13

EXERCICES DE COURS : TABLES ET FONCTIONS DE HACHAGE

EXERCICES DU COURS CLASSES PAR CHAPITRE

Chapitre du cours

Exercices écrits

H Quiz associés

Exercices Python associés

I — INTRODUCTION
I.1 Présentation des tables de hachage
I.2 Qu’est-ce qu’une clé ?

Exercice I.1 — Est-ce qu’une table de hachage est
adaptée ?
Exercice 1.2 — Clé ou valeur ?

Quizz 1 - Clés & dictionnaires

Python 1 — Déduplication avec set/dict
Python 2 — Compter les occurrences de

mots

Il — OPERATIONS PRISES EN CHARGE PAR LES
TABLES DE HACHAGE

Exercice Il.1 - Identifier les opérations
Exercice 1.2 — Tableau impossible

11l = EXEMPLES D’APPLICATIONS
I1l.1 Déduplication
I11.2 Recherches dans un vaste espace d’états

Exercice lll.1 — Simuler une déduplication
Exercice 111.2 — Pourquoi mémoriser les sommets
visités ?

Python 3 — BFS avec ensemble visited

IV — IMPLEMENTATION : IDEES GENERALES
IV.1 Liste en Python

IV.2 Fonction de hachage & table

IV.3 Collisions

IV.4 Chainage

IV.5 Adressage ouvert

IV.6 Choisir une bonne fonction de hachage

Exercice V.1 — Pourquoi la liste n’est pas suffisante
Exercice IV.2 — Calculer des indices de hachage
Exercice IV.3 - Collisions inévitables

Exercice IV.4 — Simuler une table avec chainage
Exercice IV.5 — Sondage linéaire a la main

Exercice V.6 — Bonne ou mauvaise fonction de
hachage ?

Quizz 2 - Fonction de hachage &
collisions

Quizz 3 — Chainage & adressage
ouvert

Python 4 — Mini table de hachage avec
chainage

Python 5 — Simuler I’adressage ouvert

V — FACTEUR DE CHARGE ET PERFORMANCES
V.1 Charge & performances

V.2 Gestion du facteur de charge

V.3 Choisir une bonne fonction de hachage
V.4 Choisir la stratégie de collision

Exercice V.1 — Calculer et interpréter a
Exercice V.2 — Admissible ou pas ?
Exercice V.3 — Faut-il redimensionner ?

Quizz 4 - Facteur de charge &
performances

VI - FONCTIONS DE HACHAGE UNIVERSELLES
V1.1 Définition mathématique

VI.2 Exemple : hachage d’IP

V1.3 Complexité avec chainage

V1.4 Complexité avec adressage ouvert

Exercice VI.1 — Pourquoi une seule fonction ne suffit
pas?

Exercice VI.2 — Famille universelle ou pas ?

Exercice VI.3 — Hachage d’adresses IP : calcul
concret

Exercice VI.4 — Pourquoi choisir n premier, > 255 ?
Exercice VI.5 — Longueur moyenne d’un seau

Quizz 5 — Hachage universel

VIl — LES DICTIONNAIRES PYTHON
VII.1 Structure générale

VII.2 Insertion d’une valeur

VII.3 Suppression d’une valeur
VIl.4 Recherche d’une valeur

Exercice VII.1 - Table d’indices vs table compacte
Exercice VIl.2 — Comprendre i = h & (m-1)
Exercice VII.3 — Insertion avec EMPTY et DUMMY
Exercice VIl.4 — Colt moyen vs pire cas dans dict

Quizz 6 — Dictionnaires Python

Python 6 — Clés hashables ou non
Python 7 — Compter les occurrences

14

