TD:

COMMANDES SQL

TD : COMMANDES SQL

10

11

Lister les noms des guildes du jeu.
SELECT nom FROM guildes ORDER BY nom;

Lister les joueurs (prénom, nom) triés par niveau décroissant.
SELECT prenom, nom FROM joueurs ORDER BY niveau DESC;

Lister les types de PNJ disponibles (sans doublons).
SELECT DISTINCT pnj.type FROM pnj

Lister les PNJ de type « marchand » dont le niveau est > 20.
SELECT pnj.nom FROM pnj WHERE pnj.niveau>20

Afficher la durée moyenne (en minutes) des participations réussies par quéte.
SELECT AVG(duree_effective_min) FROM participations WHERE succes='1"

Afficher le titre des quétes et le nom de leur zone.
SELECT g.titre, z.nom AS zone FROM quetes AS q
JOIN zones AS z ON g.zone_id=z.zone_id

Trouver les quétes dont le niveau requis est entre 8 et 15 (inclus).
SELECT quetes.titre FROM quetes
WHERE quetes.niveau_requis BETWEEN 8 AND 15

Compter le nombre de joueurs par guilde.

SELECT g.nom, COUNT(*) AS nombre_de_joueurs

FROM guildes AS g JOIN joueurs AS j ON j.guilde_id = g.gquilde_id
GROUP BY g.guilde_id

Donner le titre des 2 quétes les plus tentées (par nombre de participations), avec leur
total.

SELECT qg.titre AS titre, COUNT(%*) AS nombre

FROM quetes AS q JOIN participations AS p ON g.quete_id=p.quete_id
GROUP BY g.quete_id

ORDER BY COUNT(%x) DESC LIMIT 2

Donner le titre des quétes qui ont été tentées plus de 1 fois avec leur nombre de
tentatives.

SELECT qg.titre AS titre, COUNT(%*) AS nombre

FROM quetes AS q JOIN participations AS p ON g.quete_id=p.quete_id
GROUP BY q.quete_id HAVING COUNT(*) > 1

Pour chaque zone, afficher leur nom, le niveau_min et nombre de quétes disponibles.
SELECT z.nom, z.niveau_min, COUNT(%*) AS nbr_quetes

FROM zones AS z JOIN quetes AS q ON z.zone_id=q.zone_id

GROUP BY q.zone_id




TD:

COMMANDES SQL

12

13

14

15

16

17

18

19

Lister les id des participations entre deux dates (ex. date de début du 2025-09-01 au
2025-09-30, avec BETWEEN).

SELECT participation_id FROM participations

WHERE DATE(date_debut) BETWEEN '2025-09-01' AND '2025-09-30'

ORDER BY date_debut;

Afficher les id des 2 derniéeres participations.
SELECT participation_id

FROM participations

ORDER BY date_debut DESC LIMIT 2;

Afficher le titre des quétes avec leur durée effective moyenne.

SELECT qg.titre, AVG(p.duree_effective_min) AS duree_moyenne

FROM quetes AS q JOIN participations AS p ON g.quete_id = p.quete_id
GROUP BY g.quete_id

Afficher le titre de la quéte avec la durée effective moyenne maximale (globalement).
SELECT qg.titre, AVG(p.duree_effective_min) AS duree_moyenne

FROM quetes AS q JOIN participations AS p ON g.quete_id = p.quete_id
GROUP BY g.quete_id ORDER BY duree_moyenne DESC LIMIT 1

Lister les (prenom, nom) des joueurs dont le niveau est inférieur au niveau_min de la
zone « Désert Rouge ».

SELECT j.prenom, j.nom, j.niveau FROM joueurs AS j

WHERE niveau < (SELECT niveau_min FROM zones WHERE nom="Désert Rouge")

Lister le titre des quétes dont la durée estimée minimale dépasse la durée effective
moyenne observée.

SELECT g.titre, g.duree_estimee_min, AVG(p.duree_effective_min) AS
duree_moy_obs

FROM quetes q

JOIN participations p ON p.quete_id = g.quete_id

GROUP BY g.quete_id

HAVING q.duree_estimee_min > AVG(p.duree_effective_min)

Lister les couples [joueur(prenom, nom), titre de la quéte, nombre de tentatives] pour
lesquels toutes les participations ont été des échecs (HAVING).

SELECT j.prenom, j.nom, qg.titre, COUNT(%*) AS tentatives

FROM participations p

JOIN joueurs j ON j.joueur_id = p.joueur_id

JOIN quetes g ON g.quete_id = p.quete_id

GROUP BY j.joueur_id

HAVING SUM(p.succes = 1) = 0

Pour chaque nom de guilde, afficher le niveau moyen des joueurs et ne garder que celles
> 25.

SELECT g.nom, AVG(j.niveau) AS niveau_moyen

FROM guildes AS g JOIN joueurs AS j ON g.quilde_id=j.guilde_id

GROUP BY g.nom HAVING niveau_moyen > 25




TD:

COMMANDES SQL

20

21

22

23

24

25

26

27

Lister le nom des guildes au niveau moyen des joueurs > moyenne globale des joueurs.
SELECT g.nom, AVG(j.niveau)

FROM guildes AS g JOIN joueurs AS j ON j.guilde_id = g.quilde_id

GROUP BY g.guilde_id

HAVING AVG(j.niveau)>(SELECT AVG(joueurs.niveau) FROM joueurs)

Lister les zones dont le niveau requis moyen des quétes est supérieur a la moyenne
globale des niveaux requis.

SELECT z.nom AS zone, AVG(qg.niveau_requis) AS niv_requis_moy

FROM zones z JOIN quetes g ON g.zone_id = z.zone_id

GROUP BY z.zone_id

HAVING AVG(g.niveau_requis) >(SELECT AVG(niveau_requis) FROM quetes);

Lister les quétes situées dans des zones de niveau minimal est > 10 en utilisant
I'opérateur IN.

SELECT g.titre

FROM quetes q

WHERE q.zone_id IN (SELECT zone_id FROM zones WHERE niveau_min >= 10);

Lister les PNJ dont le type n’est « marchand » ni « forgeron » en utilisant I'opérateur NOT
IN.

SELECT nom

FROM pnj

WHERE type NOT IN ('marchand','forgeron');

Lister les joueurs dont la guilde n’est la guilde d’aucun joueur en utilisant I'opérateur
NOT IN et une sous-requéte dans le NOT IN. Que remarguez-vous ?

SELECT j.prenom, j.nom

FROM joueurs j

WHERE j.guilde_id NOT IN (SELECT guilde_id FROM joueurs);

Modifier votre requéte en utilisant NOT EXISTS pour répondre a la question précédente.
SELECT j.prenom, j.nom

FROM joueurs j WHERE NOT EXISTS(SELECT 1 FROM guildes AS g WHERE
g.gquilde_id=j.quilde_id)

Lister les paires des id des joueurs qui appartiennent a une méme guilde en utilisant une
auto-jointure.

SELECT jl.joueur_id AS id_joueur_A, j2.joueur_id AS id_joueur_B

FROM joueurs AS jl

JOIN joueurs AS j2 ON jl.quilde_id = j2.gquilde_id

AND jl1.joueur_id < j2.joueur_id

Méme question mais en affichant le nom de la guilde a laquelle appartiennent les paires
de joueurs.

SELECT jl.joueur_id AS id_joueur_A, j2.joueur_id AS id_joueur_B, g.nom
FROM joueurs AS jl

JOIN joueurs AS j2 ON jl.gquilde_id = j2.gquilde_id

JOIN guildes AS g ON jl.guilde_id = g.gquilde_id

AND jl1.joueur_id > j2.joueur_id




